Robust optical coating design with evolutionary strategies

被引:42
|
作者
Greiner, H
机构
[1] Philips Forschungslaboratorien GmbH, Aachen, D-52066, P.O. Box 1980, Weisshausstrasse
来源
APPLIED OPTICS | 1996年 / 35卷 / 28期
关键词
optical filter design; optimal design; tolerancing; robustness; Taguchi methods; evolutionary strategies;
D O I
10.1364/AO.35.005477
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The optical performance of interference filters depends on systematic and statistical variations of the thicknesses and indices of refraction of the layers that occur during production and use. Assuming that their distributions are known, the expected performance can be optimized as a function of the nominal layer thicknesses with the help of strategies that mimic biological evolution. This results in filter designs that are easier to manufacture and more robust to use. The method is illustrated for color shifts that are rather sensitive to layer thickness variations. Its scope is entirely general, and it could be applied to other tolerancing problems that arise in optical design. (C) 1996 Optical Society of America
引用
收藏
页码:5477 / 5483
页数:7
相关论文
共 50 条
  • [41] Evolutionary design of en-route caching strategies
    Branke, Juergen
    Funes, Pablo
    Thiele, Frederik
    [J]. APPLIED SOFT COMPUTING, 2007, 7 (03) : 890 - 898
  • [42] Color correction strategies in optical design
    Pfisterer, Richard N.
    Vorndran, Shelby D.
    [J]. INTERNATIONAL OPTICAL DESIGN CONFERENCE 2014, 2014, 9293
  • [43] Robust evolutionary algorithm design for socio-economic simulation
    Alkemade F.
    La Poutré H.
    Amman H.M.
    [J]. Computational Economics, 2006, 28 (4) : 355 - 370
  • [44] Evolutionary Design of Robust Noise-Specific Image Filters
    Vasicek, Zdenek
    Bidlo, Michal
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 269 - 276
  • [45] New Aerospace Design Challenges: Robust Multidisciplinary Evolutionary Techniques
    Srinivas, K.
    Periaux, J.
    Lee, D. S.
    Gonzalez, L. F.
    [J]. ECCOMAS MULTIDISCIPLINARY JUBILEE SYMPOSIUM: NEW COMPUTATIONAL CHALLENGES IN MATERIALS, STRUCTURES AND FLUIDS, 2009, 14 : 343 - +
  • [46] On social learning and robust evolutionary algorithm design in economic games
    Alkemade, F
    La Poutré, H
    Amman, H
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2445 - 2452
  • [47] Competitive co-evolutionary algorithm for constrained robust design
    Li, Min
    Guimaraes, Frederico
    Lowther, David A.
    [J]. IET SCIENCE MEASUREMENT & TECHNOLOGY, 2015, 9 (02) : 218 - 223
  • [48] Constrained robust optimal design using a multiobjective evolutionary algorithm
    Ray, T
    [J]. CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 419 - 424
  • [49] A multiobjective hybrid evolutionary algorithm for robust design of distribution networks
    Carrano, Eduardo G.
    Taroco, Cristiane G.
    Neto, Oriane M.
    Takahashi, Ricardo H. C.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 63 : 645 - 656
  • [50] Multi-objective evolutionary design of robust controllers on the grid
    Shenfield, Alex
    Fleming, Peter J.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2014, 27 : 17 - 27