Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure

被引:50
|
作者
Li, Jihe [1 ,2 ]
Yousefi, Keyvan [2 ,3 ]
Ding, Wen [2 ,3 ]
Singh, Jayanti [1 ,2 ]
Shehadeh, Lina A. [1 ,2 ,4 ]
机构
[1] Univ Miami, Leonard M Miller Sch Med, Div Cardiol, Dept Med, Miami, FL 33136 USA
[2] Univ Miami, Leonard M Miller Sch Med, Interdisciplinary Stem Cell Inst, Biomed Res Bldg,Room 818,1501 NW 10th Ave, Miami, FL 33136 USA
[3] Univ Miami, Leonard M Miller Sch Med, Dept Mol & Cellular Pharmacol, Miami, FL 33136 USA
[4] Univ Miami, Leonard M Miller Sch Med, Vasc Biol Inst, Miami, FL 33136 USA
关键词
Cardiac hypertrophy; Cardiac fibrosis; Heart failure; Osteopontin; Aptamer; TAC; BREAST-CANCER CELLS; DILATED CARDIOMYOPATHY; CARDIAC-HYPERTROPHY; MICE LACKING; EXPRESSION; INHIBITION; FIBROSIS; IMMUNITY; GROWTH;
D O I
10.1093/cvr/cvx016
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiac myocyte hypertrophy, the main compensatory response to chronic stress in the heart often progresses to a state of decompensation that can lead to heart failure. Osteopontin (OPN) is an effector for extracellular signalling that induces myocyte growth and fibrosis. Although increased OPN activity has been observed in stressed myocytes and fibroblasts, the detailed and long term effects of blocking OPN signalling on the heart remain poorly defined. Targeting cardiac OPN protein by an RNA aptamer may be beneficial for tuning down OPN pathologic signalling. We aimed to demonstrate the therapeutic effects of an OPN RNA aptamer on cardiac dysfunction. In vivo, we show that in a mouse model of pressure overload, treating at the time of surgeries with an OPN aptamer prevented cardiomyocyte hypertrophy and cardiac fibrosis, blocked OPN downstream signalling (PI3K and Akt phosphorylation), reduced expression of extracellular matrix (Lum, Col3a1, Fn1) and hypertrophy (Nppa, Nppb) genes, and prevented cardiac dysfunction. Treating at two months post-surgeries with the OPN aptamer reversed cardiac dysfunction and fibrosis and myocyte hypertrophy. While genetic homozygous deletion of OPN reduced myocardial wall thickness, surprisingly cardiac function and myocardial fibrosis, specifically collagen deposition and myofibroblast infiltration, were worse compared with wild type mice at three months of pressure overload. Taken together, these data demonstrate that tuning down cardiac OPN signalling by an OPN RNA aptamer is a novel and effective approach for preventing cardiac hypertrophy and fibrosis, improving cardiac function, and reversing pressure overload-induced heart failure.
引用
收藏
页码:633 / 643
页数:11
相关论文
共 50 条
  • [31] Stachydrine hydrochloride alleviates pressure overload-induced heart failure and calcium mishandling on mice
    Chen, Hui-Hua
    Wang, Si-Ning
    Cao, Tong-Tong
    Zheng, Jia-Li
    Tian, Jing
    Shang, Xiao-Li
    Zhao, Pei
    Guo, Wei
    Xu, Ming
    Zhang, Chen
    Lu, Rong
    JOURNAL OF ETHNOPHARMACOLOGY, 2020, 248
  • [32] Therapeutic Impact of Autophagy-inducing Peptide on Pressure Overload-induced Heart Failure
    Shirakabe, Akihiro
    Ikeda, Yoshiyuki
    Zai, Peiyong
    Saito, Toshiro
    Sadoshima, Junichi
    CIRCULATION, 2015, 132
  • [33] The GABAA Receptor Influences Pressure Overload-Induced Heart Failure by Modulating Macrophages in Mice
    Bu, Jin
    Huang, Shiyuan
    Wang, Jue
    Xia, Tong
    Liu, Hui
    You, Ya
    Wang, Zhaohui
    Liu, Kun
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [34] MiR-139 expression is detrimental during pressure overload-induced heart failure
    Schroen, B.
    Peters, T.
    Verhesen, W.
    Derks, W.
    Zentlini, L.
    Zacchigna, S.
    Giacca, M.
    Van der Velden, J.
    De Windt, L.
    Heymans, S.
    CARDIOVASCULAR RESEARCH, 2014, 103
  • [35] Cholesterol lowering attenuates pressure overload-induced heart failure in mice with mild hypercholesterolemia
    Muthuramu, Ilayaraja
    Mishra, Mudit
    Aboumsallem, Joseph Pierre
    Postnov, Andrey
    Gheysens, Olivier
    De Geest, Bart
    AGING-US, 2019, 11 (17): : 6872 - 6891
  • [36] Both gain and loss of Nampt function promote pressure overload-induced heart failure
    Byun, Jaemin
    Oka, Shin-ichi
    Imai, Nobushige
    Huang, Chun-Yang
    Ralda, Guersom
    Zhai, Peiyong
    Ikeda, Yoshiyuki
    Ikeda, Shohei
    Sadoshima, Junichi
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2019, 317 (04): : H711 - H725
  • [37] Absence of CCR5 exaggerated pressure overload-induced heart failure in mice
    Kimura, Akihiko
    Ishida, Yuko
    Nosaka, Mizuho
    Kuninaka, Yumi
    Mukaida, Naofumi
    Kondo, Toshikazu
    CYTOKINE, 2015, 76 (01) : 82 - 82
  • [38] Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload-Induced Heart Failure
    LaRocca, Thomas J.
    Seeger, Timon
    Prado, Maricela
    Perea-Gil, Isaac
    Neofytou, Evgenios
    Mecham, Brigham H.
    Ameen, Mohamed
    Chang, Alex Chia Yu
    Pandey, Gaurav
    Wu, Joseph C.
    Karakikes, Ioannis
    CIRCULATION-HEART FAILURE, 2020, 13 (03) : E006298
  • [39] Effect of Mitoquinone Treatment on Cardiac Function and Pathophysiology in Pressure Overload-induced Heart Failure
    Goh, Kah Yong
    Wende, Adam R.
    Soorappan, Rajasekaran N.
    Halade, Ganesh
    Darley-Usmar, Victor
    Jinno, Miki
    Prabhu, Sumanth D.
    Zhou, Lufang
    FASEB JOURNAL, 2017, 31
  • [40] Suppression of RBFox2 by Multiple MiRNAs in Pressure Overload-Induced Heart Failure
    Gu, Mingyao
    Zhao, Yuying
    Wang, Hong
    Cheng, Wanwen
    Liu, Jie
    Ouyang, Kunfu
    Wei, Chaoliang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)