Non-central limit theorem of the weighted power variations of Gaussian processes

被引:0
|
作者
Kim, Iltae [1 ]
Park, Hyun Suk [2 ]
Kim, Yoon Tae [2 ]
机构
[1] Chonnam Natl Univ, Dept Econ, Kwangju 500757, South Korea
[2] Hallym Univ, Dept Stat, Chunchon 200702, Gangwon Do, South Korea
关键词
Malliavin calculus; Fractional Brownian motion; Non-central limit theorem; Power variation; Multiple stochastic integral; RESPECT;
D O I
10.1016/j.jkss.2013.09.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By using the techniques of the Malliavin calculus, we investigate the asymptotic behavior of the weighted q-variations of continuous Gaussian process of the form B-t = integral(t)(0) K (t, s) dW (s), where W is the standard Brownian motion and K is a square integrable kernel. In particular, in the case of fractional Brownian motion with the Hurst parameter H, the limit can be expressed as the sum of q + 1 Skorohod integrals of the Hermite process with self-similarity q(H - 1) + 1. This result gives the relation between the Skorohod integral and a pathwise Young integral of the Hermite process. (C) 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 223
页数:9
相关论文
共 50 条
  • [21] On rate of convergence in non-central limit theorems
    Anh, Vo
    Leonenko, Nikolai
    Olenko, Andriy
    Vaskovych, Volodymyr
    BERNOULLI, 2019, 25 (4A) : 2920 - 2948
  • [22] Central limit theorems for power variation of Gaussian integral processes with jumps
    LIU GuangYing
    TANG JiaShan
    ZHANG XinSheng
    ScienceChina(Mathematics), 2014, 57 (08) : 1671 - 1685
  • [23] Central limit theorems for power variation of Gaussian integral processes with jumps
    Liu GuangYing
    Tang JiaShan
    Zhang XinSheng
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (08) : 1671 - 1685
  • [24] Central limit theorems for power variation of Gaussian integral processes with jumps
    GuangYing Liu
    JiaShan Tang
    XinSheng Zhang
    Science China Mathematics, 2014, 57 : 1671 - 1685
  • [25] CENTRAL LIMIT THEOREM FOR STATIONARY PROCESSES
    HEYDE, CC
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 30 (04): : 315 - 320
  • [26] VARIATIONS OF NON-CENTRAL T + BETA DISTRIBUTIONS
    PARK, JH
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (04): : 1583 - +
  • [27] Central limit theorem for linear processes
    Peligrad, M
    Utev, S
    ANNALS OF PROBABILITY, 1997, 25 (01): : 443 - 456
  • [28] Central limit theorem for Markov processes
    Landim, C
    FROM CLASSICAL TO MODERN PROBABILITY, 2003, 54 : 145 - 205
  • [29] CENTRAL LIMIT THEOREM FOR STATIONARY PROCESSES
    GORDIN, MI
    DOKLADY AKADEMII NAUK SSSR, 1969, 188 (04): : 739 - &
  • [30] On the Central Limit Theorem for Linear Processes
    Li Yongming
    Xiao Simin
    Xu Jian
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, PTS 1 AND 2, 2011, : 1354 - +