Diffusive transport parameters of deuterium through China reduced activation ferritic-martensitic steels

被引:37
|
作者
Wang, Bo [1 ]
Liu, Lingbo [1 ]
Xiang, Xin [1 ]
Rao, Yongchu [1 ]
Ye, Xiaoqiu [1 ]
Chen, Chang An [1 ]
机构
[1] Sci & Technol Surface Phys & Chem Lab, 9-35 Huafengxincun, Jiangyou City 621908, Sichuan Provinc, Peoples R China
基金
中国国家自然科学基金;
关键词
Permeation; CLAM; CLF-1; Deuterium; HYDROGEN TRANSPORT; SOLUBILITY; IRRADIATION; IRON;
D O I
10.1016/j.jnucmat.2015.12.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reduced Activation Ferritic/Martensitic (RAFM) steels have been considered as the most promising candidate structure materials for a fusion reactor. In the recent decades, two new types of RAFM steels, called China Low Activation Martensitic (CLAM) steel and China Low-activation Ferritic (CLF-1) steel, have been developed. The gas evolution permeation technique has been used to investigate diffusive transport parameters of deuterium through CLAM and CLF-1 over the temperature range 623 similar to 873 K at deuterium pressure of 10(5) Pa. The resultant transport parameters are: Phi (mol.m(-1) s(-1) Pa-1/2) = 5.40 x 10(-8) exp (-46.8 (kJ.mol(-1))/RT), D(m(2) s(-1)) = 3.81 x 10(-7) exp(-24.0(kJ.mol(-1))/RT) and S (mol.m(-3) Pa-1/2) = 1.42 x 10(-1) exp(-22.8(kJ.mol(-1))/RT) for CLAM; while Phi(mol m(-1) s(-1) Pa-1/2) = 1.76 x 10(-8) exp(-43.9(kJ.mol(-1))/RT), D(m(2).s(-1)) = 1.02 x 10(-7) exp(-16.9(kJ.mol(-1))/RT) and S(mol.m(-1) Pa-1/2) = 1.73 x 10(-1) exp(-27.0(kJ.mol(-1))/RT) for CLF-1. The results show that CLAM is more permeable than CLF-1, thus it is easier for hydrogen isotopes to transport and be removed. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 33
页数:4
相关论文
共 50 条
  • [41] Investigation of strain heterogeneities between grains in ferritic and ferritic-martensitic steels
    Marteau, J.
    Haddadi, H.
    Bouvier, S.
    Proceedings of the Society for Experimental Mechanics, Inc., 2013, 53 (01): : 427 - 439
  • [42] Investigation of Strain Heterogeneities Between Grains in Ferritic and Ferritic-Martensitic Steels
    Marteau, J.
    Haddadi, H.
    Bouvier, S.
    EXPERIMENTAL MECHANICS, 2013, 53 (03) : 427 - 439
  • [43] Corrosion behavior of ferritic and ferritic-martensitic steels in supercritical carbon dioxide
    Zhu, Zhongliang
    Cheng, Yi
    Xiao, Bo
    Khan, Hasan Izhar
    Xu, Hong
    Zhang, Naiqiang
    ENERGY, 2019, 175 : 1075 - 1084
  • [44] JOINING OF BE TO FERRITIC-MARTENSITIC STEELS WITH DIFFUSION BARRIER INTERLAYER
    Park, Jeong-Yong
    Jung, Yang-Il
    Choi, Byung-Kwon
    Jeong, Yong Hwan
    Kim, Suk-Kwon
    Lee, Dong Won
    Cho, Seungyon
    FUSION SCIENCE AND TECHNOLOGY, 2011, 60 (01) : 422 - 425
  • [45] TWO-PHASE FERRITIC-MARTENSITIC STEELS.
    Golovanenko, S.A.
    Fonshtein, N.M.
    Metal Science and Heat Treatment (English Translation of Metallovedenie i Termicheskaya Obrabotka, 1984, 26 (11-12): : 811 - 816
  • [46] A Road Map for the Advanced Manufacturing of Ferritic-Martensitic Steels
    Sridharan, Niyanth
    Field, Kevin
    FUSION SCIENCE AND TECHNOLOGY, 2019, 75 (04) : 264 - 274
  • [47] Investigation of Strain Heterogeneities Between Grains in Ferritic and Ferritic-Martensitic Steels
    J. Marteau
    H. Haddadi
    S. Bouvier
    Experimental Mechanics, 2013, 53 : 427 - 439
  • [48] Friction stir welding of thick section reduced activation ferritic-martensitic steel
    Manugula, Vijaya L.
    Rajulapati, Koteswararao, V
    Reddy, G. Madhusudhan
    Kumar, E. Rajendra
    Rao, K. Bhanu Sankara
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2018, 23 (08) : 666 - 676
  • [49] Corrosion of ferritic-martensitic steels in steam and supercritical water
    Bischoff, Jeremy
    Motta, Arthur T.
    Eichfeld, Chad
    Comstock, Robert J.
    Cao, Guoping
    Allen, Todd R.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 441 (1-3) : 604 - 611
  • [50] PLASTICITY OF FERRITIC-MARTENSITIC 2-PHASE STEELS
    UGGOWITZER, P
    STUWE, HP
    ZEITSCHRIFT FUR METALLKUNDE, 1982, 73 (05): : 277 - 285