Neural Multi-scale Image Compression

被引:17
|
作者
Nakanishi, Ken M. [1 ]
Maeda, Shin-ichi [2 ]
Miyato, Takeru [2 ]
Okanohara, Daisuke [2 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[2] Preferred Networks Inc, Chiyoda Ku, Otemachi Bldg,1-6-1 Otemachi, Tokyo 1000004, Japan
来源
关键词
D O I
10.1007/978-3-030-20876-9_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study presents a new lossy image compression method that utilizes the multi-scale features of natural images. Our model consists of two networks: multi-scale lossy autoencoder and parallel multiscale lossless coder. The multi-scale lossy autoencoder extracts the multiscale image features to quantized variables, and the parallel multi-scale lossless coder enables rapid and accurate lossless coding of the quantized variables via encoding/decoding the variables in parallel. Our proposed model achieves comparable performance to the state-of-the-art model on Kodak and RAISE-1k dataset images, and it encodes a PNG image of size 768x512 in 70 ms with a single GPU and a single CPU process and decodes it into a high-fidelity image in approximately 200 ms.
引用
收藏
页码:718 / 732
页数:15
相关论文
共 50 条
  • [1] BOOSTED MULTI-SCALE DICTIONARIES FOR IMAGE COMPRESSION
    Nejati, Mansour
    Samavi, Shadrokh
    Karimi, Nader
    Soroushmehr, S. M. Reza
    Najarian, Kayvan
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1130 - 1134
  • [2] Multi-spectral image compression by fusing multi-scale feature convolutional neural networks
    Zhang, Lili
    Chen, Zikun
    Pan, Tianpeng
    Qu, Lele
    [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (04): : 622 - 634
  • [3] An Image Compression Framework Based on Multi-scale Convolutional Neural Network for Deformation Images
    Liu, Zhenbing
    Li, Xinlong
    Li, Weiwei
    Lan, Rushi
    Luo, Xiaonan
    [J]. 2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 174 - 179
  • [4] Neural Image Compression via Attentional Multi-scale Back Projection and Frequency Decomposition
    Gao, Ge
    You, Pei
    Pan, Rong
    Han, Shunyuan
    Zhang, Yuanyuan
    Dai, Yuchao
    Lee, Hojae
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14657 - 14666
  • [5] Deep image compression based on multi-scale deformable convolution
    Li, Daowen
    Li, Yingming
    Sun, Heming
    Yu, Lu
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 87
  • [6] A New Image Compression Algorithm Based on Multi-scale Transform
    Li, Yuancheng
    Yang, Qiu
    [J]. 2008 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2008, : 353 - 356
  • [7] Exploiting multi-scale support vector regression for image compression
    Li, Bin
    Zheng, Danian
    Sun, Lifeng
    Yang, Shiqiang
    [J]. NEUROCOMPUTING, 2007, 70 (16-18) : 3068 - 3074
  • [8] Anisotropic Multi-scale Sparse Learned Bases for Image Compression
    Dremeau, Angelique
    Herzet, Cedric
    Guillemot, Christine
    Fuchs, Jean-Jacques
    [J]. VISUAL INFORMATION PROCESSING AND COMMUNICATION, 2010, 7543
  • [9] Multi-Scale Deep Neural Network Microscopic Image Segmentation
    Wu, Xundong
    Wu, Yong
    Stefani, Enrico
    [J]. BIOPHYSICAL JOURNAL, 2015, 108 (02) : 473A - 473A
  • [10] Multi-Scale Neural Network With Dilated Convolutions for Image Deblurring
    Ople, Jose Jaena Mari
    Yeh, Pin-Yi
    Sun, Shih-Wei
    Tsai, I-Te
    Hua, Kai-Lung
    [J]. IEEE ACCESS, 2020, 8 : 53942 - 53952