Anisotropic Multi-scale Sparse Learned Bases for Image Compression

被引:0
|
作者
Dremeau, Angelique [1 ]
Herzet, Cedric [1 ]
Guillemot, Christine [1 ]
Fuchs, Jean-Jacques [1 ]
机构
[1] INRIA, Rennes Res Ctr, F-35042 Rennes, France
关键词
Image compression; sparsity-distortion optimization; anisotropic learned basis;
D O I
10.1117/12.838691
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new compression algorithm based on multi-scale learned bases. We first explain the construction of a set of image bases using a bintree segmentation and the optimization procedure used to select the image basis from this set. We then present the sparse orthonormal transforms introduced by Sezer et al.(1) and propose some extensions tending to improve the convergence of the learning algorithm on the one hand and to adapt the transforms to the coding scheme used on the other hand. Comparisons in terms of rate-distortion performance are finally made with the current compression standards JPEG and JPEG2000.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] LEARNED IMAGE COMPRESSION WITH MULTI-SCALE SPATIAL AND CONTEXTUAL INFORMATION FUSION
    Liu, Ziyi
    Wang, Hanli
    Su, Taiyi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 706 - 710
  • [2] Learned Image Compression with Inception Residual Blocks and Multi-Scale Attention Module
    Fu, Haisheng
    Liang, Feng
    Liang, Jie
    Li, BingLin
    Zhang, GuoHe
    Han, JiangNing
    2022 PICTURE CODING SYMPOSIUM (PCS), 2022, : 43 - 47
  • [3] Learned Distributed Image Compression with Multi-Scale Patch Matching in Feature Domain
    Huang, Yujun
    Chen, Bin
    Qin, Shiyu
    Li, Jiawei
    Wang, Yaowei
    Dai, Tao
    Xia, Shu-Tao
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4322 - 4329
  • [4] Neural Multi-scale Image Compression
    Nakanishi, Ken M.
    Maeda, Shin-ichi
    Miyato, Takeru
    Okanohara, Daisuke
    COMPUTER VISION - ACCV 2018, PT VI, 2019, 11366 : 718 - 732
  • [5] Multi-Modal Image Fusion via Sparse Representation and Multi-Scale Anisotropic Guided Measure
    Zhang, Shuai
    Huang, Fuyu
    Zhong, Hui
    Liu, Bingqi
    Chen, Yichao
    Wang, Ziang
    IEEE ACCESS, 2020, 8 : 35638 - 35649
  • [6] BOOSTED MULTI-SCALE DICTIONARIES FOR IMAGE COMPRESSION
    Nejati, Mansour
    Samavi, Shadrokh
    Karimi, Nader
    Soroushmehr, S. M. Reza
    Najarian, Kayvan
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1130 - 1134
  • [7] LC-TMNet: learned lossless medical image compression with tunable multi-scale network
    Liao, Hengrui
    Li, Yue
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [8] Multi-Scale Anisotropic Gaussian Kernels for Image Edge Detection
    Li, Yunhong
    Bi, Yuandong
    Zhang, Weichuan
    Sun, Changming
    IEEE ACCESS, 2020, 8 : 1803 - 1812
  • [9] MASC-Net: Multi-scale Anisotropic Sparse Convolutional Network for Sparse Depth Densification
    Ryu, Seungchul
    Cho, Ji-Ho
    Kunnath, Neeth
    2020 17TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV 2020), 2020, : 109 - 116
  • [10] Multi-scale Sparse Domination
    Beltran, David
    Roos, Joris
    Seeger, Andreas
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 298 (1491)