GraviTIE: Exploratory Analysis of Large-Scale Heterogeneous Image Collections

被引:0
|
作者
Yang, Sean T. [1 ]
Rodriguez, Luke [1 ]
West, Jevin D. [1 ]
Howe, Bill [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
关键词
GraviTIE; MultiDEC; Visualizing Large-Scale Image Collections;
D O I
10.1145/3308558.3314142
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present GraviTIE (Global Representation and Visualization of Text and Image Embeddings, pronounced "gravity"), an interactive visualization system for large-scale image datasets. GraviTIE operates on datasets consisting of images equipped with unstructured and semi-structured text, relying on multi-modal unsupervised learning methods to produce an interactive similarity map. Users interact with the similarity map through pan and zoom operations, as well as keyword-oriented queries. GraviTIE makes no assumptions about the form, scale, or content of the data, allowing it to be used for exploratory analysis, assessment of unsupervised learning methods, data curation and quality control, data profiling, and other purposes where flexibility and scalability are paramount. We demonstrate GraviTIE on three real datasets: 500k images from the Russian misinformation dataset from Twitter, 2 million art images, and 5 million scientific figures. A screencast video is available at https://vimeo.com/310511187.
引用
收藏
页码:3605 / 3609
页数:5
相关论文
共 50 条
  • [31] Managing Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures
    Pacevicius, Michael Felix
    Ramos, Marilia
    Roverso, Davide
    Eriksen, Christian Thun
    Paltrinieri, Nicola
    [J]. ENERGIES, 2022, 15 (09)
  • [32] Analysis and Management of Heterogeneous User Mobility in Large-scale Downlink Systems
    Mueller, Axel
    Bjornson, Emil
    Couillet, Romain
    Debbah, Merouane
    [J]. 2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 773 - 777
  • [33] MultiAspectForensics: Pattern Mining on Large-scale Heterogeneous Networks with Tensor Analysis
    Maruhashi, Koji
    Guo, Fan
    Faloutsos, Christos
    [J]. 2011 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2011), 2011, : 203 - 210
  • [34] CHCF: A Cloud-Based Heterogeneous Computing Framework for Large-Scale Image Retrieval
    Wang, Hanli
    Xiao, Bo
    Wang, Lei
    Zhu, Fengkuangtian
    Jiang, Yu-Gang
    Wu, Jun
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2015, 25 (12) : 1900 - 1913
  • [35] Large-scale exploratory genetic analysis of cognitive impairment in Parkinson's disease
    Mata, Ignacio F.
    Johnson, Catherine O.
    Leverenz, James B.
    Weintraub, Daniel
    Trojanowski, John Q.
    Van Deerlin, Vivianna M.
    Ritz, Beate
    Rausch, Rebecca
    Factor, Stewart A.
    Wood-Siverio, Cathy
    Quinn, Joseph F.
    Chung, Kathryn A.
    Peterson-Hiller, Amie L.
    Espay, Alberto J.
    Revilla, Fredy J.
    Devoto, Johnna
    Yearout, Dora
    Hu, Shu-Ching
    Cholerton, Brenna A.
    Montine, Thomas J.
    Edwards, Karen L.
    Zabetian, Cyrus P.
    [J]. NEUROBIOLOGY OF AGING, 2017, 56 : 211.e1 - 211.e7
  • [36] Towards Exploratory Landscape Analysis for Large-scale Optimization: A Dimensionality Reduction Framework
    Tanabe, Ryoji
    [J]. PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 546 - 555
  • [37] LARGE-SCALE IMAGE-PROCESSING
    CHEN, CC
    [J]. BULLETIN OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1987, 13 (06): : 15 - 16
  • [38] Large-Scale Image Retrieval with Elasticsearch
    Amato, Giuseppe
    Bolettieri, Paolo
    Carrara, Fabio
    Falchi, Fabrizio
    Gennaro, Claudio
    [J]. ACM/SIGIR PROCEEDINGS 2018, 2018, : 925 - 928
  • [39] Large-scale methods in image deblurring
    Hansen, Per Christian
    Jensen, Toke Koldborg
    [J]. APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2007, 4699 : 24 - +
  • [40] COMPRESSIVE LARGE-SCALE IMAGE SENSING
    Liang, Wei-Jie
    Lin, Gang-Xuan
    Lu, Chun-Shien
    [J]. 2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 378 - 382