Robust maximum weighted independent-set problems on interval graphs

被引:6
|
作者
Nobibon, Fabrice Talla [1 ,2 ,3 ]
Leus, Roel [3 ]
机构
[1] Res Fdn Flanders FWO, Brussels, Belgium
[2] Univ Liege, HEC Management Sch, QuantOM, Liege, Belgium
[3] Katholieke Univ Leuven, ORSTAT, Fac Business & Econ, Louvain, Belgium
关键词
Combinatorial problems; Computational complexity; Interval graphs; Independent set; Dynamic programming; OPTIMIZATION;
D O I
10.1007/s11590-012-0563-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the maximum weighted independent-set problem on interval graphs with uncertainty on the vertex weights. We use the absolute robustness criterion and the min-max regret criterion to evaluate solutions. For a discrete scenario set, we find that the problem is NP-hard for each of the robustness criteria; we also provide pseudo-polynomial time algorithms when there is a constant number of scenarios and show that the problem is strongly NP-hard when the set of scenarios is unbounded. When the scenario set is a Cartesian product, we prove that the problem is equivalent to a maximum weighted independent-set problem on the same interval graph but without uncertainty for the first objective function and that the scenario set can be reduced for the second objective function.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 50 条
  • [31] Computing Maximum Independent Set on Outerstring Graphs and Their Relatives
    Bose, Prosenjit
    Carmi, Paz
    Keil, Mark J.
    Maheshwari, Anil
    Mehrabi, Saeed
    Mondal, Debajyoti
    Smid, Michiel
    [J]. ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 211 - 224
  • [32] On the maximum independent set problem in subclasses of subcubic graphs
    Lozin, Vadim
    Monnot, Jerome
    Ries, Bernard
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2015, 31 : 104 - 112
  • [33] DETERMINING DNA-SEQUENCE SIMILARITY USING MAXIMUM INDEPENDENT SET ALGORITHMS FOR INTERVAL-GRAPHS
    JOSEPH, D
    MEIDANIS, J
    TIWARI, P
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1992, 621 : 326 - 337
  • [34] The Maximum Independent Set Problem in Subclasses of Subcubic Graphs
    Brause, Christoph
    Ngoc Chi Le
    Schiermeyer, Ingo
    [J]. DISCRETE MATHEMATICS, 2015, 338 (10) : 1766 - 1778
  • [35] THE MAXIMUM INDEPENDENT SET PROBLEM FOR CUBIC PLANAR GRAPHS
    BURNS, JE
    [J]. NETWORKS, 1989, 19 (03) : 373 - 378
  • [36] Computing maximum independent set on outerstring graphs and their relatives
    Bose, Prosenjit
    Carmi, Paz
    Keil, J. Mark
    Maheshwari, Anil
    Mehrabi, Saeed
    Mondal, Debajyoti
    Smid, Michiel
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 103
  • [37] Parallel maximum independent set in convex bipartite graphs
    Czumaj, A
    Diks, K
    Przytycka, TM
    [J]. INFORMATION PROCESSING LETTERS, 1996, 59 (06) : 289 - 294
  • [38] Dynamic Approximate Maximum Independent Set on Massive Graphs
    Gao, Xiangyu
    Li, Jianzhong
    Miao, Dongjing
    [J]. 2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1835 - 1847
  • [39] Independent-set reconfiguration thresholds of hereditary graph classes
    de Berg, Mark
    Jansen, Bart M. P.
    Mukherjee, Debankur
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 250 : 165 - 182
  • [40] A genetic algorithm for maximum independent set problems
    Liu, XZ
    Sakamoto, A
    Shimamoto, T
    [J]. INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 1916 - 1921