Exponents appearing in heterogeneous reaction-diffusion models in one dimension

被引:19
|
作者
Monthus, C
机构
[1] Service de Physique Théorique, Commisariat à l'Energie Atomique Saclay, Gif-sur-Yvette
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevE.54.4844
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the following one-dimensional (1D) two-species reaction-diffusion model: there is a small concentration of B particles with diffusion constant D-B in an homogenous background of W particles with diffusion constant D-W; two W particles of the majority species either coagulate (W+W-->W) or annihilate (W+W-->0) with the respective probabilities p(c)=(q-2)/(q-1) and p(a)=1/(q-1); a B particle and a W particle annihilate (W+B-->0) with probability 1. The exponent theta(q,lambda=D-g/D-W) describing the asymptotic time decay of the minority B species concentration can be viewed as a generalization of the exponent of persistent spins in the zero-temperature Glauber dynamics of the 1D q-state Potts model starting from a random initial condition: the W particles represent domain walls, and the exponent theta(q,lambda) characterizes the time decay of the probability that a diffusive ''spectator'' does not meet a domain wall up to time t. We extend the methods introduced by Derrida, Hakim, and Pasquier [Phys. Rev. Lett. 75, 751 (1995); J. Stat. Phys. (to be published)] for the problem of persistent spins, to compute the exponent theta(q,lambda) in perturbation at first order in (q-1) for arbitrary lambda and at first order in lambda for arbitrary q.
引用
收藏
页码:4844 / 4859
页数:16
相关论文
共 50 条
  • [1] Grid equidistribution for reaction-diffusion problems in one dimension
    Kopteva, N
    Madden, N
    Stynes, M
    [J]. NUMERICAL ALGORITHMS, 2005, 40 (03) : 305 - 322
  • [2] Reaction-diffusion processes and metapopulation models in heterogeneous networks
    Colizza, Vittoria
    Pastor-Satorras, Romualdo
    Vespignani, Alessandro
    [J]. NATURE PHYSICS, 2007, 3 (04) : 276 - 282
  • [3] Nonlocal Reaction-Diffusion Models of Heterogeneous Wealth Distribution
    Banerjee, Malay
    Petrovskii, Sergei, V
    Volpert, Vitaly
    [J]. MATHEMATICS, 2021, 9 (04) : 1 - 18
  • [4] Reaction diffusion models in one dimension with disorder
    Le Doussal, P
    Monthus, C
    [J]. PHYSICAL REVIEW E, 1999, 60 (02): : 1212 - 1238
  • [5] Solvability of reaction-diffusion model with variable exponents
    Shangerganesh, Lingeshwaran
    Balachandran, Krishnan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (10) : 1436 - 1448
  • [6] Reaction-diffusion models of threshold and waveblock in heterogeneous excitable media
    Alford, John G.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (13) : 7212 - 7220
  • [7] Pattern formation in spatially heterogeneous Turing reaction-diffusion models
    Page, K
    Maini, PK
    Monk, NAM
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 181 (1-2) : 80 - 101
  • [8] CONTINUOUSLY VARYING EXPONENTS IN REACTION-DIFFUSION SYSTEMS
    NEWMAN, TJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (06): : L183 - L190
  • [9] Traveling wave speed and solution in reaction-diffusion equation in one dimension
    Zhou, TS
    Zhang, SC
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (06) : 674 - 681
  • [10] Dynamics of front solutions in a specific reaction-diffusion system in one dimension
    Ei, Shin-Ichiro
    Ikeda, Hideo
    Kawana, Takeyuki
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2008, 25 (01) : 117 - 147