Reaction-diffusion models of threshold and waveblock in heterogeneous excitable media

被引:0
|
作者
Alford, John G. [1 ]
机构
[1] Sam Houston State Univ, Dept Math, Huntsville, TX 77341 USA
关键词
Reaction-diffusion; Waveblock; Heterogeneous excitable media; UNIDIRECTIONAL BLOCK; IMPULSE PROPAGATION; CARDIAC TISSUE; ARRHYTHMIAS; EXCITATION; SYSTEMS; WAVES; CELLS;
D O I
10.1016/j.amc.2011.12.092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear and linear reaction-diffusion equation models of heterogeneous excitable media are presented. These models include threshold, but no recovery. The linear model behaves in a similar manner to the nonlinear model under certain parameter constraints. It is shown that if a threshold stimulus is applied near the boundary of heterogeneities in excitability, waveblock and unidirectional propagation may occur. In this case, an excitation front propagates in one direction while propagation in the opposite direction is blocked. Waveblock corresponds to specific time-independent, nonhomogeneous steady state solutions of the models. These steady states are numerically and analytically investigated to determine the critical parameter values for which waveblock will occur. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:7212 / 7220
页数:9
相关论文
共 50 条
  • [1] BISTABLE REACTION-DIFFUSION EQUATIONS AND EXCITABLE MEDIA
    GARTNER, J
    [J]. MATHEMATISCHE NACHRICHTEN, 1983, 112 : 125 - 152
  • [2] Reaction-Diffusion Media with Excitable Oregonators Coupled by Memristors
    Gong, Xiyuan
    Asai, Tetsuya
    Motomura, Masato
    [J]. 2012 13TH INTERNATIONAL WORKSHOP ON CELLULAR NANOSCALE NETWORKS AND THEIR APPLICATIONS (CNNA), 2012,
  • [3] Three-valued logic gates in reaction-diffusion excitable media
    Motoike, IN
    Adarnatzky, A
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 24 (01) : 107 - 114
  • [4] Asynchronous algorithm for integration of reaction-diffusion equations for inhomogeneous excitable media
    Rousseau, G
    Kapral, R
    [J]. CHAOS, 2000, 10 (04) : 812 - 825
  • [5] SPATIAL AND SPATIOTEMPORAL REACTION-DIFFUSION PATTERNS IN HETEROGENEOUS MEDIA
    MALCHOW, H
    ROSE, H
    SATTLER, C
    [J]. JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1992, 17 (01) : 41 - 52
  • [6] Effective medium approach for heterogeneous reaction-diffusion media
    Alonso, Sergio
    Baer, Markus
    Kapral, Raymond
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (21):
  • [7] Reaction-diffusion processes and metapopulation models in heterogeneous networks
    Colizza, Vittoria
    Pastor-Satorras, Romualdo
    Vespignani, Alessandro
    [J]. NATURE PHYSICS, 2007, 3 (04) : 276 - 282
  • [8] Nonlocal Reaction-Diffusion Models of Heterogeneous Wealth Distribution
    Banerjee, Malay
    Petrovskii, Sergei, V
    Volpert, Vitaly
    [J]. MATHEMATICS, 2021, 9 (04) : 1 - 18
  • [9] Pulse dynamics in an excitable reaction-diffusion system
    Ohta, T
    Ito, T
    [J]. MACROMOLECULAR SYMPOSIA, 2000, 160 : 15 - 19
  • [10] Finite Element Method for the Reaction-Diffusion Equation in Heterogeneous Media
    Hernandez Ramirez, Juan David
    [J]. BOLETIN DE MATEMATICAS, 2018, 25 (02): : 123 - 138