Learning through ferroelectric domain dynamics in solid-state synapses

被引:463
|
作者
Boyn, Soeren [1 ,7 ]
Grollier, Julie [1 ]
Lecerf, Gwendal [2 ]
Xu, Bin [3 ,4 ]
Locatelli, Nicolas [5 ]
Fusil, Stephane [1 ]
Girod, Stephanie [1 ,8 ]
Carretero, Cecile [1 ]
Garcia, Karin [1 ]
Xavier, Stephane [6 ]
Tomas, Jean [2 ]
Bellaiche, Laurent [3 ,4 ]
Bibes, Manuel [1 ]
Barthelemy, Agnes [1 ]
Saighi, Sylvain [2 ]
Garcia, Vincent [1 ]
机构
[1] Univ Paris Sud, Univ Paris Saclay, CNRS, Unite Mixte Phys, F-91767 Palaiseau, France
[2] Univ Bordeaux, IMS, UMR 5218, F-33405 Talence, France
[3] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[4] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[5] Univ Paris Sud, Univ Paris Saclay, CNRS, C2N Orsay,Ctr Nanosci & Nanotechnol, F-91405 Orsay, France
[6] Thales Res & Technol, 1 Ave Augustin Fresnel,Campus Ecole Polytech, F-91767 Palaiseau, France
[7] Swiss Fed Inst Technol, Electrochem Mat, CH-8092 Zurich, Switzerland
[8] LIST, Mat Res & Technol Dept, 41 Rue Brill, L-4422 Belvaux, Luxembourg
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
MEMRISTIVE DEVICES; MEMORY DEVICE; PLASTICITY;
D O I
10.1038/ncomms14736
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Polarization Dynamics of Solid-State Quantum Emitters
    Kumar, Anand
    Samaner, Caglar
    Cholsuk, Chanaprom
    Matthes, Tjorben
    Pacal, Serkan
    Oyun, Yagiz
    Ashkan, Zand
    Chapman, Robert J.
    Saerens, Gregoire
    Grange, Rachel
    Suwanna, Sujin
    Ates, Serkan
    Vogl, Tobias
    ACS NANO, 2024, 18 (07) : 5270 - 5281
  • [42] EXCITATION TRANSPORT AND DYNAMICS IN SOLID-STATE SYSTEMS
    FAYER, MD
    JOURNAL OF LUMINESCENCE, 1984, 31-2 (DEC) : 525 - 529
  • [43] Backbone Dynamics Studies of Mammalian Dynactin CAP-Gly Domain by Solid-State NMR
    Yan, Si
    Vega, Alexander J.
    Williams, John C.
    Polenova, Tatyana
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 605 - 605
  • [44] Solid-state NMR and rigid body molecular dynamics to determine domain orientations of monomeric phospholamban
    Mascioni, A
    Karim, C
    Zamoon, J
    Thomas, DD
    Veglia, G
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (32) : 9392 - 9393
  • [45] Advances in the Microwave Domain of Solid-State Electronics.
    Smolinski, Adam
    Elektronika, 1975, 16 (01): : 4 - 8
  • [46] Temperature-resilient solid-state organic artificial synapses for neuromorphic computing
    Melianas, A.
    Quill, T. J.
    LeCroy, G.
    Tuchman, Y.
    v Loo, H.
    Keene, S. T.
    Giovannitti, A.
    Lee, H. R.
    Maria, I. P.
    McCulloch, I
    Salleo, A.
    SCIENCE ADVANCES, 2020, 6 (27)
  • [47] TRANSLOCATION OF λ-DNA THROUGH A SOLID-STATE NANOPORE
    Wu Hongwen
    Zhao Zhiliang
    Liu Liping
    Sun Feng
    Kong Jingling
    Ye Xiaofeng
    Chen Yiwen
    Liu Quanjun
    PROGRESS ON POST-GENOME TECHNOLOGIES AND MODERN NATURAL PRODUCTS, 2011, 2011, : 141 - 143
  • [48] DNA translocation through solid-state nanopore
    Zhao X.
    Zhao Y.
    Deng Y.
    Zhou D.
    Zhang Z.
    Huang Q.
    Wang D.
    Journal of Micro-Bio Robotics, 2018, 14 (1-2) : 35 - 40
  • [49] MACHINE LEARNING SUPPORTS SOLID-STATE BATTERIES
    不详
    ADVANCED MATERIALS & PROCESSES, 2023, 181 (05): : 10 - 10
  • [50] DNA Translocation through Solid-state Nanopore
    Zhao, Xiaojing
    Wang, Deqiang
    Zhao, Xiaojing
    Zhao, Yue
    Deng, Yunsheng
    Zhou, Daming
    Zhang, Ziyin
    Huang, Qimeng
    Wang, Deqiang
    2017 IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), 2017, : 384 - 387