Learning through ferroelectric domain dynamics in solid-state synapses

被引:463
|
作者
Boyn, Soeren [1 ,7 ]
Grollier, Julie [1 ]
Lecerf, Gwendal [2 ]
Xu, Bin [3 ,4 ]
Locatelli, Nicolas [5 ]
Fusil, Stephane [1 ]
Girod, Stephanie [1 ,8 ]
Carretero, Cecile [1 ]
Garcia, Karin [1 ]
Xavier, Stephane [6 ]
Tomas, Jean [2 ]
Bellaiche, Laurent [3 ,4 ]
Bibes, Manuel [1 ]
Barthelemy, Agnes [1 ]
Saighi, Sylvain [2 ]
Garcia, Vincent [1 ]
机构
[1] Univ Paris Sud, Univ Paris Saclay, CNRS, Unite Mixte Phys, F-91767 Palaiseau, France
[2] Univ Bordeaux, IMS, UMR 5218, F-33405 Talence, France
[3] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[4] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[5] Univ Paris Sud, Univ Paris Saclay, CNRS, C2N Orsay,Ctr Nanosci & Nanotechnol, F-91405 Orsay, France
[6] Thales Res & Technol, 1 Ave Augustin Fresnel,Campus Ecole Polytech, F-91767 Palaiseau, France
[7] Swiss Fed Inst Technol, Electrochem Mat, CH-8092 Zurich, Switzerland
[8] LIST, Mat Res & Technol Dept, 41 Rue Brill, L-4422 Belvaux, Luxembourg
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
MEMRISTIVE DEVICES; MEMORY DEVICE; PLASTICITY;
D O I
10.1038/ncomms14736
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Learning through ferroelectric domain dynamics in solid-state synapses
    Sören Boyn
    Julie Grollier
    Gwendal Lecerf
    Bin Xu
    Nicolas Locatelli
    Stéphane Fusil
    Stéphanie Girod
    Cécile Carrétéro
    Karin Garcia
    Stéphane Xavier
    Jean Tomas
    Laurent Bellaiche
    Manuel Bibes
    Agnès Barthélémy
    Sylvain Saïghi
    Vincent Garcia
    Nature Communications, 8
  • [2] Solid-State Synthesis of Ferroelectric Lead Metatantalate
    M. L. Sholokhovich
    V. E. Dugin
    I. N. Rybina
    Inorganic Materials, 2001, 37 : 405 - 407
  • [3] SOLID-STATE IMAGE INTENSIFIERS WITH FERROELECTRIC AMPLIFICATION
    WINSLOW, JS
    KAZAN, B
    PROCEEDINGS OF THE IEEE, 1964, 52 (11) : 1381 - &
  • [4] Solid-state synthesis of ferroelectric lead metatantalate
    Sholokhovich, ML
    Dugin, VE
    Rybina, IN
    INORGANIC MATERIALS, 2001, 37 (04) : 405 - 407
  • [5] DYNAMICS OF SOLID-STATE POLYMERIZATION
    PRASAD, PN
    ACS SYMPOSIUM SERIES, 1987, 337 : 106 - 116
  • [6] DYNAMICS OF SOLID-STATE POLYMERIZATION
    PRASAD, PN
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1986, 191 : 101 - PMSE
  • [7] Tunable Magnetization Dynamics through Solid-State Ligand Substitution Reaction
    Wang, Long-Fei
    Qiu, Jiang-Zhen
    Hong, Jun-Yu
    Chen, Yan-Cong
    Li, Quan-Wen
    Jia, Jian-Hua
    Jover, Jesus
    Ruiz, Eliseo
    Liu, Jun-Liang
    Tong, Ming-Liang
    INORGANIC CHEMISTRY, 2017, 56 (15) : 8829 - 8836
  • [8] Structure and Dynamics in Functionalized Graphene Oxides through Solid-State NMR
    MacIntosh, Adam R.
    Harris, Kristopher J.
    Goward, Gillian R.
    CHEMISTRY OF MATERIALS, 2016, 28 (01) : 360 - 367
  • [9] Solid-state memories based on ferroelectric tunnel junctions
    Chanthbouala, Andre
    Crassous, Arnaud
    Garcia, Vincent
    Bouzehouane, Karim
    Fusil, Stephane
    Moya, Xavier
    Allibe, Julie
    Dlubak, Bruno
    Grollier, Julie
    Xavier, Stephane
    Deranlot, Cyrile
    Moshar, Amir
    Proksch, Roger
    Mathur, Neil D.
    Bibes, Manuel
    Barthelemy, Agnes
    NATURE NANOTECHNOLOGY, 2012, 7 (02) : 101 - 104
  • [10] Ferroelectric hollow particles obtained by solid-state reaction
    Buscaglia, Maria Teresa
    Buscaglia, Vincenzo
    Viviani, Massimo
    Dondero, Giovanni
    Roehrig, Serge
    Ruediger, Andreas
    Nanni, Paolo
    NANOTECHNOLOGY, 2008, 19 (22)