A 60 wt% Pt-Fe/C and a 60 wt% Pt-Cu/C catalysts with Fe and Cu content of 5 wt% were prepared by using a combination of colloidal and incipient wetness methods; this has allowed synthesis of small nanostructured crystalline bimetallic catalysts with particle size less than 3 nm and with a suitable degree of alloying. These materials were studied in terms of structure, morphology and composition using XRD, XRF and TEM techniques. The electrocatalytic behaviour for ORR of the catalysts was investigated using the rotating disk technique and compared to that of a pure Pt catalyst with similar particle size. No improvement in performance was recorded with the Pt-Cu compared to Pt catalyst, whereas, a promoting effect in enhancing the ORR was observed for the Pt-Fe catalyst both with and without methanol in the oxygen-saturated electrolyte solution.
机构:
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
Markovic, N. M.
Schmidt, T. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
Schmidt, T. J.
Stamenkovic, V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
Stamenkovic, V.
Ross, P. N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA