An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex

被引:21
|
作者
Zhang, Ye [1 ]
Chen, Kenian [2 ,3 ]
Sloan, Steven A. [1 ]
Bennett, Mariko L. [1 ]
Scholze, Anja R. [1 ]
O'Keeffe, Sean [4 ]
Phatnani, Hemali P. [4 ]
Guarnieri, Paolo [7 ,9 ]
Caneda, Christine [1 ]
Ruderisch, Nadine [5 ]
Deng, Shuyun [2 ,3 ]
Liddelow, Shane A. [1 ,6 ]
Zhang, Chaolin [4 ,7 ,8 ]
Daneman, Richard [5 ]
Maniatis, Tom [4 ]
Barres, Ben A. [1 ]
Wu, Jia Qian [2 ,3 ]
机构
[1] Stanford Univ, Sch Med, Dept Neurobiol, Stanford, CA 94305 USA
[2] Univ Texas Houston, Med Sch Houston, Vivian L Smith Dept Neurosurg, Houston, TX 77057 USA
[3] Univ Texas, Inst Mol Med Brown, Ctr Stem Cell & Regenerat Med, Houston, TX 77057 USA
[4] Columbia Univ, Med Ctr, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[5] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA
[6] Univ Melbourne, Dept Pharmacol & Therapeut, Parkville, Vic 3010, Australia
[7] Columbia Univ, Dept Syst Biol, New York, NY 10032 USA
[8] Columbia Univ, Ctr Motor Neuron Biol & Dis, New York, NY 10032 USA
[9] Columbia Univ, Herbert Irving Comprehens Canc Ctr, New York, NY 10032 USA
来源
JOURNAL OF NEUROSCIENCE | 2014年 / 34卷 / 36期
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
alternative splicing; astrocytes; microglia; oligodendrocytes; transcriptome; vascular cells; BRAIN ENERGY-METABOLISM; GENE-EXPRESSION; ADHESION MOLECULE; GENOMIC ANALYSIS; BINDING PROTEIN; NONCODING RNAS; STEM-CELLS; RAT-BRAIN; IN-VITRO; ASTROCYTES;
D O I
10.1523/JNEUROSCI.1860-14.2014
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain. To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain.
引用
收藏
页码:11929 / 11947
页数:19
相关论文
共 50 条
  • [31] Single cell RNA-sequencing of circulating tumor cells
    Miyamoto, David T.
    Zheng, Yu
    Wittner, Ben S.
    Lee, Richard J.
    Zhu, Huili
    Broderick, Katherine T.
    Desai, Rushil
    Brannigan, Brian W.
    Arora, Kshitij S.
    Dahl, Douglas M.
    Sequist, Lecia V.
    Smith, Matthew R.
    Kapur, Ravi
    Wu, Chin-Lee
    Shioda, Toshi
    Ramaswamy, Sridhar
    Ting, David T.
    Toner, Mehmet
    Maheswaran, Shyamala
    Haber, Daniel A.
    CLINICAL CANCER RESEARCH, 2016, 22
  • [32] RNA-sequencing reveals early, dynamic transcriptome changes in the corollas of pollinated petunias
    Shaun R Broderick
    Saranga Wijeratne
    Asela J Wijeratn
    Laura J Chapin
    Tea Meulia
    Michelle L Jones
    BMC Plant Biology, 14
  • [33] An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury
    Amanda Brosius Lutz
    Tawaun A. Lucas
    Glenn A. Carson
    Christine Caneda
    Lu Zhou
    Ben A. Barres
    Marion S. Buckwalter
    Steven A. Sloan
    Journal of Neuroinflammation, 19
  • [34] Chemerin effect on transcriptome of the porcine endometrium during implantation determined by RNA-sequencing†
    Orzechowska, Kinga
    Kopij, Grzegorz
    Paukszto, Lukasz
    Dobrzyn, Kamil
    Kiezun, Marta
    Jastrzebski, Jan
    Kaminski, Tadeusz
    Smolinska, Nina
    BIOLOGY OF REPRODUCTION, 2022, 107 (02) : 557 - 573
  • [35] Impact of Hydrogen on the Transcriptome of Sinorhizobium meliloti 1021 Using RNA-sequencing Technology
    Liu, Ruirui
    Li, Lulu
    Li, Zhiying
    Wang, Weiwei
    POLISH JOURNAL OF MICROBIOLOGY, 2020, 69 (01) : 39 - 48
  • [36] Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing
    Tan, Guangxuan
    Liu, Kun
    Kang, Jingmin
    Xu, Kedong
    Zhang, Yi
    Hu, Lizong
    Zhang, Ju
    Li, Chengwei
    FRONTIERS IN PLANT SCIENCE, 2015, 6
  • [37] PATERNAL TRANSCRIPTOME ANALYSIS BY RNA-SEQUENCING AS A MEASURE OF EMBRYONIC DEVELOPMENTAL POTENTIAL.
    Cozzubbo, T.
    Neri, Q. V.
    Rosenwaks, Z.
    Palermo, G. D.
    FERTILITY AND STERILITY, 2015, 104 (03) : E298 - E298
  • [38] RNA-SEQUENCING REVEALS ASTROCYTE TRANSCRIPTOME ALTERATIONS IN RESPONSE TO CHRONIC ETHANOL EXPOSURE
    Erickson, E. K.
    Farris, S. P.
    Blednov, Y. A.
    Mayfield, Rd.
    Harris, R. A.
    ALCOHOL, 2017, 60 : 227 - 227
  • [39] RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine
    Persinoti, Gabriela Felix
    de Aguiar Peres, Nalu Teixeira
    Jacob, Tiago Rinaldi
    Rossi, Antonio
    Vencio, Ricardo Zorzetto
    Martinez-Rossi, Nilce Maria
    BMC GENOMICS, 2014, 15 : S1
  • [40] Transcriptome Profiling of Bovine Milk Oligosaccharide Metabolism Genes Using RNA-Sequencing
    Wickramasinghe, Saumya
    Hua, Serenus
    Rincon, Gonzalo
    Islas-Trejo, Alma
    German, J. Bruce
    Lebrilla, Carlito B.
    Medrano, Juan F.
    PLOS ONE, 2011, 6 (04):