Multi-objective optimization of lithium-ion battery model using genetic algorithm approach

被引:150
|
作者
Zhang, Liqiang [1 ]
Wang, Lixin [1 ]
Hinds, Gareth [2 ]
Lyu, Chao [1 ]
Zheng, Jun [1 ]
Li, Junfu [1 ]
机构
[1] Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150001, Peoples R China
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
基金
中国国家自然科学基金;
关键词
Parameter identification; Multi-objective genetic algorithm; Multi-physics model; Lithium-ion battery; PARAMETER SENSITIVITY-ANALYSIS; CAPACITY FADE ANALYSIS; CYCLE LIFE; EXTRACTION; DISCHARGE; CHARGE;
D O I
10.1016/j.jpowsour.2014.07.110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A multi-objective parameter identification method for modeling of Li-ion battery performance is presented. Terminal voltage and surface temperature curves at 15 degrees C and 30 degrees C are used as four identification objectives. The Pareto fronts of two types of Li-ion battery are obtained using the modified multi-objective genetic algorithm NSGA-II and the final identification results are selected using the multiple criteria decision making method TOPSIS. The simulated data using the final identification results are in good agreement with experimental data under a range of operating conditions. The validation results demonstrate that the modified NSGA-II and TOPSIS algorithms can be used as robust and reliable tools for identifying parameters of multi-physics models for many types of Li-ion batteries. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 378
页数:12
相关论文
共 50 条
  • [21] Multi-objective Genetic Algorithm Approach to Feature Subset Optimization
    Saroj, Jyoti
    SOUVENIR OF THE 2014 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2014, : 544 - 548
  • [22] Credit portfolio optimization: A multi-objective genetic algorithm approach
    Wang, Zhi
    Zhang, Xuan
    Zhang, ZheKai
    Sheng, Dachen
    BORSA ISTANBUL REVIEW, 2022, 22 (01) : 69 - 76
  • [23] Multi-Objective Optimization Of Hard Turning: A Genetic Algorithm Approach
    Manav, Omkar
    Chinchanikar, Satish
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (05) : 12240 - 12248
  • [24] Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm
    Brand, Jonathan
    Zhang, Zheming
    Agarwal, Ramesh K.
    JOURNAL OF POWER SOURCES, 2014, 247 : 729 - 737
  • [25] On the Automatic Tuning of a Retina Model by Using a Multi-objective Optimization Genetic Algorithm
    Crespo-Cano, Ruben
    Martinez-Alvarez, Antonio
    Diaz-Tahoces, Ariadna
    Cuenca-Asensi, Sergio
    Ferrandez, J. M.
    Fernandez, Eduardo
    ARTIFICIAL COMPUTATION IN BIOLOGY AND MEDICINE, PT I (IWINAC 2015), 2015, 9107 : 108 - 118
  • [26] POLYNOMIAL NARX MODEL STRUCTURE OPTIMIZATION USING MULTI-OBJECTIVE GENETIC ALGORITHM
    Loghmanian, Sayed Mohammad Reza
    Yusof, Rubiyah
    Khalid, Marzuki
    Ismail, Fatimah Sham
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (10B): : 7341 - 7362
  • [27] Multi-Objective Optimization of NARX Model for System Identification Using Genetic Algorithm
    Loghmanian, S. Mohammad Reza
    Ahmad, Robiah
    Jamaluddin, Hishamuddin
    2009 1ST INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, COMMUNICATION SYSTEMS AND NETWORKS(CICSYN 2009), 2009, : 196 - 201
  • [28] Novel decomposed genetic algorithm for equivalent circuit model parameter optimization of lithium-ion battery
    An, Qing
    Zhang, Xia
    Rao, Lang
    Zhang, Mengyan
    JOURNAL OF ENERGY STORAGE, 2025, 108
  • [29] Multi-objective optimization estimation of state of health for lithium-ion battery based on constant current charging profile
    Hu, Wenzhen
    Zhang, Chuang
    Liu, Suzhen
    Jin, Liang
    Xu, Zhicheng
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [30] Multi-objective optimization of lithium-ion battery designs considering the dilemma between energy density and rate capability
    Ma, Xiao-Ying
    Zhang, Wen-Ke
    Yin, Ying
    Liu, Kailong
    Yang, Xiao-Guang
    ENERGY AND AI, 2024, 18