Nonparametric State Machine with Multiple Features for Abnormal Object Classification

被引:0
|
作者
Kim, Jiman [1 ]
Kang, Bongnam [1 ]
机构
[1] Pohang Univ Sci & Technol, Pohang 790784, Gyeongbuk, South Korea
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Abandoned object and removed object are important abnormal objects in visual surveillance area to predict the crimes such as explosion or theft event. In real situations, most of existing methods using CCD camera show inconsistent performance because they use a lot of threshold values depending on the environmental conditions of target scene such as illumination change, high traffic volume and complex background. We propose a nonparametric state machine with hierarchical structure consisting of three layers. As shown in the experimental results, the proposed method can be applied to general situations because the state transitions is performed by trained SVM classifiers.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 50 条
  • [21] What is damaged: a benchmark dataset for abnormal traffic object classification
    Chen Wang
    Shifan Zhu
    Desheng Lyu
    Xiaoshuai Sun
    Multimedia Tools and Applications, 2020, 79 : 18481 - 18494
  • [22] What is damaged: a benchmark dataset for abnormal traffic object classification
    Wang, Chen
    Zhu, Shifan
    Lyu, Desheng
    Sun, Xiaoshuai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (25-26) : 18481 - 18494
  • [23] Support Feature Machine for Classification of Abnormal Brain Activity
    Chaovalitwongse, W. Art
    Fan, Ya-Ju
    Sachdeo, Raiesh C.
    KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2007, : 113 - +
  • [24] Machine Learning Based Classification of Resting-State fMRI Features Exemplified by Metabolic State (Hunger/Satiety)
    Al-Zubaidi, Arkan
    Mertins, Alfred
    Heldmann, Marcus
    Jauch-Chara, Kamila
    Muente, Thomas F.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2019, 13
  • [25] Bayesian Nonparametric Modeling for Predicting Dynamic Dependencies in Multiple Object Tracking
    Moraffah, Bahman
    Papandreou-Suppappola, Antonia
    SENSORS, 2022, 22 (01)
  • [26] Detection of Stationary Foreground Objects Using Multiple Nonparametric Background-Foreground Models on a Finite State Machine
    Cuevas, Carlos
    Martinez, Raquel
    Berjon, Daniel
    Garcia, Narciso
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (03) : 1127 - 1142
  • [27] A Novel Nonparametric Approach for Saliency Detection Using Multiple Features
    He, Xin
    Jing, Huiyun
    Han, Qi
    Niu, Xiamu
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2012), PT II, 2012, 7197 : 83 - 90
  • [28] RECENT RESULTS ON NONPARAMETRIC REGRESSION ESTIMATE AND MULTIPLE CLASSIFICATION.
    Gyorfi, L.
    Problems of control and information theory, 1981, 10 (01): : 43 - 52
  • [29] Object detection in color images using nonparametric Bayes classification and orthogonal functions
    Celenk, M
    Shao, Y
    VISUAL INFORMATION PROCESSING VII, 1998, 3387 : 147 - 155
  • [30] On The Use of Nonparametric Neighborhood Classification Rules in Multiple Classifier Combination
    Han, Deqiang
    Han, Chongzhao
    Yang, Yi
    Liu, Yu
    Liang, Yongqi
    PROCEEDINGS OF THE 2008 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2008, : 197 - 201