Nonparametric State Machine with Multiple Features for Abnormal Object Classification

被引:0
|
作者
Kim, Jiman [1 ]
Kang, Bongnam [1 ]
机构
[1] Pohang Univ Sci & Technol, Pohang 790784, Gyeongbuk, South Korea
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Abandoned object and removed object are important abnormal objects in visual surveillance area to predict the crimes such as explosion or theft event. In real situations, most of existing methods using CCD camera show inconsistent performance because they use a lot of threshold values depending on the environmental conditions of target scene such as illumination change, high traffic volume and complex background. We propose a nonparametric state machine with hierarchical structure consisting of three layers. As shown in the experimental results, the proposed method can be applied to general situations because the state transitions is performed by trained SVM classifiers.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 50 条
  • [1] Spatial adjacent bag of features with multiple superpixels for object segmentation and classification
    Tao, Wenbing
    Zhou, Yicong
    Liu, Liman
    Li, Kunqian
    Sun, Kun
    Zhang, Zhiguo
    INFORMATION SCIENCES, 2014, 281 : 373 - 385
  • [2] The Multiple Primitives Classification of Point Cloud Combining Point, Voxel and Object Features
    Wang W.
    Li Z.
    Fu Y.
    Xiong F.
    Zhao Z.
    He H.
    Journal of Geo-Information Science, 2022, 24 (02) : 365 - 377
  • [3] Accurate abandoned and removed object classification using hierarchical finite state machine
    Kim, Jiman
    Kim, Daijin
    IMAGE AND VISION COMPUTING, 2015, 44 : 1 - 14
  • [4] Classification of Foreign Object Debris Using Integrated Visual Features and Extreme Learning Machine
    Hu, Kai
    Cui, Dongshun
    Zhang, Yuan
    Cao, Chunhong
    Xiao, Fen
    Huang, Guangbin
    COMPUTER VISION, PT III, 2017, 773 : 3 - 13
  • [5] COMPLEX DISCRIMINANT FEATURES FOR OBJECT CLASSIFICATION
    Han, Sunhyoung
    Vasconcelos, Nuno
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1700 - 1703
  • [6] Computation of generic features for object classification
    Hall, D
    Crowley, JL
    SCALE SPACE METHODS IN COMPUTER VISION, PROCEEDINGS, 2003, 2695 : 744 - 756
  • [7] Object classification with aggregating multiple spatial views using a machine-learning approach
    Grac, Simon
    Beno, Peter
    Duchon, Frantisek
    Maly, Michal
    Dekan, Martin
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2024, 75 (02): : 137 - 150
  • [8] MULTIPLE FEATURES FUSION FOR HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON EXTREME LEARNING MACHINE
    Liu, Wei
    Wu, Zebin
    Wei, Jie
    Deng, Weishi
    Xu, Yang
    Du, Lu
    Wei, Zhihui
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3218 - 3221
  • [9] Support Vector Machine (SVM) and Object Based Classification in Earth Linear Features Extraction: A Comparison
    Salleh, Siti Aekbal
    Khalid, Nafisah
    Danny, Natasha
    Zaki, Nurul Ain Mohd.
    Ustuner, Mustafa
    Abd Latif, Zulkiflee
    Foronda, Vladimir
    REVUE INTERNATIONALE DE GEOMATIQUE, 2024, 33 : 183 - 199
  • [10] FEATURES' SELECTION FOR FOREST STATE CLASSIFICATION USING MACHINE LEARNING ON SATELLITE DATA
    Salil, Yevhenii
    Kuzin, Volodymyr
    Lavreniuk, Alla
    Kussul, Nataliia
    Shelestov, Andrii
    2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024), 2024, : 9874 - 9878