Enhancing proton mobility in polymer electrolyte membranes: Lessons from molecular dynamics simulations

被引:197
|
作者
Spohr, E [1 ]
Commer, P [1 ]
Kornyshev, AA [1 ]
机构
[1] Forschungszentrum Julich, Inst Werkstoffe & Verfahren Energietech IWV3, D-52425 Julich, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2002年 / 106卷 / 41期
关键词
D O I
10.1021/jp020209u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Typical proton-conducting polymer electrolyte membranes (PEM) for fuel cell applications consist of a perfluorinated polymeric backbone and side chains with SO(3)H groups. The latter dissociate upon sufficient water uptake into SO(3)(-) groups on the chains and protons in the aqueous subphase, which percolates through the membrane. We report here systematic molecular dynamics simulations of proton transport through the aqueous subphase of wet PEMs. The simulations utilize a recently developed simplified version (Walbran, A.; Kornyshev, A. A. J. Chem. Phys. 2001, 114, 10039) of an empirical valence bond (EVB) model, which is designed to describe the structural diffusion during proton transfer in a multiproton environment. The polymer subphase is described as an excluded volume for water, in which pores of a fixed slab-shaped geometry are considered. We study the effects on proton mobility of the charge delocalization inside the SO(3)(-) groups, of the headgroup density (PPM "equivalent weight"), and of the motion of headgroups and side chains. We analyze the correlation between the proton mobility and the degree of proton confinement in proton-carrying clusters near SO(3)(-) parent groups. We have found and rationalized the following factors that facilitate the proton transfer: (i) charge delocalization within the SO(3)(-) groups, (ii) fluctuational motions of the headgroups and side chains, and (iii) water content.
引用
收藏
页码:10560 / 10569
页数:10
相关论文
共 50 条
  • [41] High temperature proton conducting hybrid polymer electrolyte membranes
    Homna, I
    Nakajima, H
    Nomura, S
    SOLID STATE IONICS, 2002, 154 : 707 - 712
  • [42] The effect of water content on proton transport in polymer electrolyte membranes
    Commer, P.
    Cherstvy, A. G.
    Spohr, E.
    Kornyshev, A. A.
    FUEL CELLS, 2003, 2 (3-4) : 127 - 136
  • [43] Investigation of the effects of methanol presence on characteristics of sulfonated aromatic electrolyte membranes: Molecular dynamics simulations
    Bahlakeh, Ghasem
    Nikazar, Manouchehr
    Hafezi, Mohammad-Javad
    Hasani-Sadrabadi, Mohammad Mahdi
    JOURNAL OF POWER SOURCES, 2013, 243 : 935 - 945
  • [44] Molecular simulations of liquid separations in polymer membranes
    Xu, Qisong
    Jiang, Jianwen
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2020, 28 (28) : 66 - 74
  • [45] AEI 111-Dynamics of molecular systems: (1) Vibrational energies from ab initio semiclassical dynamics; (2) Proton conduction in nanoconfined polymer electrolyte membranes for fuel cells
    Atahan, Sule
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [46] Molecular simulations for entangled polymer dynamics
    Masubuchi, Yuichi
    NIHON REOROJI GAKKAISHI, 2006, 34 (05) : 275 - 282
  • [47] Molecular dynamics simulations of polymer translocations
    Randel, R
    Loebl, HC
    Matthai, CC
    MACROMOLECULAR THEORY AND SIMULATIONS, 2004, 13 (05) : 387 - 391
  • [48] Coupled Monte Carlo and Molecular Dynamics Simulations on Interfacial Properties of Antifouling Polymer Membranes
    Chen, Yiqi
    Schultz, Andrew J.
    Errington, Jeffrey R.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (29): : 8193 - 8204
  • [49] Molecular Simulations of Hydrated Proton Exchange Membranes: the Structure
    Marchand, Gabriel
    Bopp, Philippe A.
    Spohr, Eckhard
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (1-2): : 101 - 111
  • [50] Lessons from 8 Milliseconds of Aggregated Kinase Molecular Dynamics Simulations
    Sultan, Mohammad M.
    Pande, Vijay
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 233A - 233A