Enhancing proton mobility in polymer electrolyte membranes: Lessons from molecular dynamics simulations

被引:197
|
作者
Spohr, E [1 ]
Commer, P [1 ]
Kornyshev, AA [1 ]
机构
[1] Forschungszentrum Julich, Inst Werkstoffe & Verfahren Energietech IWV3, D-52425 Julich, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2002年 / 106卷 / 41期
关键词
D O I
10.1021/jp020209u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Typical proton-conducting polymer electrolyte membranes (PEM) for fuel cell applications consist of a perfluorinated polymeric backbone and side chains with SO(3)H groups. The latter dissociate upon sufficient water uptake into SO(3)(-) groups on the chains and protons in the aqueous subphase, which percolates through the membrane. We report here systematic molecular dynamics simulations of proton transport through the aqueous subphase of wet PEMs. The simulations utilize a recently developed simplified version (Walbran, A.; Kornyshev, A. A. J. Chem. Phys. 2001, 114, 10039) of an empirical valence bond (EVB) model, which is designed to describe the structural diffusion during proton transfer in a multiproton environment. The polymer subphase is described as an excluded volume for water, in which pores of a fixed slab-shaped geometry are considered. We study the effects on proton mobility of the charge delocalization inside the SO(3)(-) groups, of the headgroup density (PPM "equivalent weight"), and of the motion of headgroups and side chains. We analyze the correlation between the proton mobility and the degree of proton confinement in proton-carrying clusters near SO(3)(-) parent groups. We have found and rationalized the following factors that facilitate the proton transfer: (i) charge delocalization within the SO(3)(-) groups, (ii) fluctuational motions of the headgroups and side chains, and (iii) water content.
引用
收藏
页码:10560 / 10569
页数:10
相关论文
共 50 条
  • [1] Reactive Molecular Dynamics Study of Proton Transport in Polymer Electrolyte Membranes
    Selvan, Myvizhi Esai
    Keffer, David J.
    Cui, Shengting
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (38): : 18835 - 18846
  • [2] Proton Transport in Polymer Electrolyte Membranes Using Theory and Classical Molecular Dynamics
    Kornyshev, A. A.
    Spohr, E.
    DEVICE AND MATERIALS MODELING IN PEM FUEL CELLS, 2009, 113 : 349 - 363
  • [3] Elucidating proton conductivity performance of sulfonated polybenzimidazole polymer membranes: Lessons from molecular dynamics simulation
    Aref, Latif
    Fallahzadeh, Rasoul
    Gholamiarjenaki, Nabiollah
    Rahmati, Mahmoud
    SOLID STATE IONICS, 2023, 399
  • [4] Molecular dynamics simulations of side chain pendants of perfluorosulfonic acid polymer electrolyte membranes
    Sunda, Anurag Prakash
    Venkatnathan, Arun
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (03) : 557 - 569
  • [5] Proton mobility and thermal conductivities of fuel cell polymer membranes: Molecular dynamics simulation
    Zheng, Chenyang
    Geng, Fan
    Rao, Zhonghao
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 132 : 55 - 61
  • [6] Multiscale simulations of proton and hydroxide solvation and transport in polymer electrolyte membranes
    Lindberg, Gerrick
    Knight, Chris
    Jorn, Ryan
    Voth, Gregory A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [7] FUEL 147-Molecular dynamics simulation of excess proton solvation and transport in polymer electrolyte membranes
    Voth, Gregory A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232
  • [8] PHYS 164-Molecular dynamics simulation of excess proton solvation and transport in polymer electrolyte membranes
    Voth, Gregory A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [9] Molecular Dynamics Simulation of Proton Transport in Polymer Electrolyte Membrane
    Mabuchi, Takuya
    Tokumasu, Takashi
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (04) : 2958 - 2963
  • [10] Molecular Modeling of proton conduction in polymer electrolyte membranes of Naflon® type
    Paddison, S. J.
    Eikerling, M.
    Zawodzinski, T. A., Jr.
    Pratt, L. R.
    ICCN 2002: INTERNATIONAL CONFERENCE ON COMPUTATIONAL NANOSCIENCE AND NANOTECHNOLOGY, 2002, : 115 - 116