Gas diffusion layer for proton exchange membrane fuel cells-A review

被引:425
|
作者
Cindrella, L. [1 ,2 ]
Kannan, A. M. [1 ]
Lin, J. F. [1 ]
Saminathan, K. [1 ]
Ho, Y. [3 ]
Lin, C. W. [4 ]
Wertz, J. [5 ]
机构
[1] Arizona State Univ, Dept Engn Technol, Fuel Cell Res Lab, Mesa, AZ 85212 USA
[2] Natl Inst Technol, Dept Chem, Tiruchirappalli 620015, Tamil Nadu, India
[3] Asia Univ, Coll Hlth Sci, Dept Biotechnol, Taichung 41354, Taiwan
[4] Natl Yunlin Univ Sci & Technol, Dept Chem Engn, Yunlin 640, Taiwan
[5] Hollingsworth & Vose Co, AK Nicholson Res Lab, W Groton, MA 01472 USA
关键词
Gas diffusion layer; Hydrophobicity; Porosity; Water management; Gas permeability; Proton exchange membrane fuel cell; LIQUID WATER TRANSPORT; MICRO-POROUS LAYER; SOLID-POLYMER-ELECTROLYTE; POROSITY DISTRIBUTION VARIATION; PREDICTING CONTACT RESISTANCE; SERPENTINE FLOW-FIELDS; COMPOSITE CARBON-BLACK; NEUTRON IMAGING PART; MASS-TRANSPORT; 2-PHASE FLOW;
D O I
10.1016/j.jpowsour.2009.04.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gas diffusion layer (GDL) is one of the critical components acting both as the functional as well as the support structure for membrane-electrode assembly in the proton exchange membrane fuel cell (PEMFC). The role of the GDL is very significant in the H-2/air PEM fuel cell to make it commercially viable. A bibliometric analysis of the publications on the GDLs since 1992 shows a total of 400+ publications (>140 papers in the journal of Power Sources alone) and reveals an exponential growth due to reasons that PEMFC promises a lot of potential as the future energy source for varied applications and hence its vital component GDL requires due innovative analysis and research. This paper is an attempt to pool together the published work on the GDLs and also to review the essential properties of the GDLs, the method of achieving each one of them, their characterization and the current status and future directions. The optimization of the functional properties of the GDLs is possible only by understanding the role of its key parameters such as structure. porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and the surface morphology. This paper discusses them in detail to provide an insight into the structural parts that make the GDLs and also the processes that occur in the GDLs under service conditions and the characteristic properties. The required balance in the properties of the GDLs to facilitate the counter current flow of the gas and water is highlighted through its characteristics. (C) 2009 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:146 / 160
页数:15
相关论文
共 50 条
  • [21] Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells - A review
    Arvay, A.
    Yli-Rantala, E.
    Liu, C. -H.
    Peng, X. -H.
    Koski, P.
    Cindrella, L.
    Kauranen, P.
    Wilde, P. M.
    Kannan, A. M.
    JOURNAL OF POWER SOURCES, 2012, 213 : 317 - 337
  • [22] Transport properties of gas diffusion layer of proton exchange membrane fuel cells: Effects of compression
    Bao, Zhiming
    Li, Yanan
    Zhou, Xia
    Gao, Fei
    Du, Qing
    Jiao, Kui
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 178
  • [23] Freezing characteristics of supercooled water in gas diffusion layer of proton exchange membrane fuel cells
    Chen, Zhihao
    Utaka, Yoshio
    Xu, Jingying
    Wang, Yunqing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (65) : 25527 - 25537
  • [24] Material Processing of Bamboo for Use as a Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells
    Kinumoto, Taro
    Matsumura, Takuya
    Yamaguchi, Koki
    Matsuoka, Miki
    Tsumura, Tomoki
    Toyoda, Masahiro
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (07): : 1374 - 1380
  • [25] Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells
    Utaka Y.
    Xu J.
    Wang G.
    Chen Z.
    Chen, Zhihao (zhchen2015@tju.edu.cn), 1600, Materials China (72): : 2276 - 2282
  • [26] A Numerical Model for Predicting Gas Diffusion Layer Failure in Proton Exchange Membrane Fuel Cells
    Yi, Peiyun
    Peng, Linfa
    Lai, Xinmin
    Ni, Jun
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (01):
  • [27] Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells
    Omrani, Reza
    Shabani, Bahman
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (07) : 3834 - 3860
  • [28] Liquid transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of microporous layer cracks
    Shi, Xin
    Jiao, Daokuan
    Bao, Zhiming
    Jiao, Kui
    Chen, Wenmiao
    Liu, Zhi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 6247 - 6258
  • [29] Engineered Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells
    Blanco, Mauricio
    Wilkinson, David P.
    Wang, Haijiang
    Liu, Simon Z. S.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 1507 - 1518
  • [30] Characterization of the gas diffusion electrodes of proton exchange membrane fuel cells
    Pires, M.
    Azevedo, C. M. N.
    Ramos, C. Z.
    Canalli, V. M.
    MATERIA-RIO DE JANEIRO, 2009, 14 (04): : 1121 - 1133