Heat pulse propagation and nonlocal phonon heat transport in one-dimensional harmonic chains

被引:6
|
作者
Allen, Philip B. [1 ]
Nghiem, Nhat A. [1 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
关键词
THERMAL-CONDUCTIVITY; BOLTZMANN-EQUATION; LOCALIZATION; DIFFUSION; ABSENCE; DECAY;
D O I
10.1103/PhysRevB.105.174302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phonons are the main heat carriers in semiconductor devices. In small devices, heat is not driven by a local temperature gradient, but by local points of heat input and removal. This complicates theoretical modeling. Study of the propagation of vibrational energy from an initial localized pulse provides insight into nonlocal phonon heat transport. We report simulations of pulse propagation in one dimension. The 1d case has tricky anomalies, but provides the simplest pictures of the evolution from initially ballistic toward longer time diffusive propagation. Our results show surprising details, such as diverse results from different definitions of atomistic local energy, and failure to exhibit pure diffusion at long times. Boltzmann phonon gas theory, including external energy insertion, is applied to this inherently time-dependent and nonlocal problem. The solution, using relaxation time approximation for impurity scattering, does not closely agree with the simulated results.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Laplace transform method for one-dimensional heat and wave equations with nonlocal conditions
    Bahuguna, D.
    Abbas, S.
    Shukla, R.K.
    International Journal of Applied Mathematics and Statistics, 2010, 16 (M10): : 96 - 100
  • [42] EXPERIMENTAL AND THEORETICAL TRANSIENT HEAT PROPAGATION IN A ONE-DIMENSIONAL COMPOSITE MATERIAL
    ELION, HA
    PHYSICAL REVIEW, 1950, 78 (03): : 350 - 350
  • [43] Effect of nonlocal transport on heat-wave propagation
    Gregori, G
    Glenzer, SH
    Knight, J
    Niemann, C
    Price, D
    Froula, DH
    Edwards, MJ
    Town, RPJ
    Brantov, A
    Rozmus, W
    Bychenkov, VY
    PHYSICAL REVIEW LETTERS, 2004, 92 (20) : 205006 - 1
  • [44] Vibrational modes in aperiodic one-dimensional harmonic chains
    de Moura, F. A. B. F.
    Viana, L. P.
    Frery, A. C.
    PHYSICAL REVIEW B, 2006, 73 (21)
  • [45] Thermal conductance of one-dimensional disordered harmonic chains
    Ash, Biswarup
    Amir, Ariel
    Bar-Sinai, Yohai
    Oreg, Yuval
    Imry, Yoseph
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [46] THE ABSENCE OF LOCALIZATION IN ONE-DIMENSIONAL DISORDERED HARMONIC CHAINS
    DATTA, PK
    KUNDU, K
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (24) : 4465 - 4478
  • [47] Charge transport in one-dimensional chains of nanoparticles
    Govor, Leonid V.
    Bauer, Gottfried H.
    Luedtke, Thomas
    Haug, Rolf J.
    Parisi, Juergen
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2012, 6 (01): : 16 - 18
  • [48] Heat transport over nonmagnetic lithium chains in LiCuVO4, a new one-dimensional superionic conductor
    Parfen'eva, LS
    Shelykh, AI
    Smirnov, IA
    Prokof'ev, AV
    Assmus, W
    Misiorek, H
    Mucha, J
    Jezowski, A
    Vasil'eva, IG
    PHYSICS OF THE SOLID STATE, 2003, 45 (11) : 2093 - 2098
  • [49] Heat transport over nonmagnetic lithium chains in LiCuVO4, a new one-dimensional superionic conductor
    L. S. Parfen’eva
    A. I. Shelykh
    I. A. Smirnov
    A. V. Prokof’ev
    W. Assmus
    H. Misiorek
    J. Mucha
    A. Jezowski
    I. G. Vasil’eva
    Physics of the Solid State, 2003, 45 : 2093 - 2098
  • [50] TRANSPORT COEFFICIENT AND HEAT PULSE-PROPAGATION
    YAMAGUCHI, H
    ITOH, SI
    HANADA, K
    KUBOTA, T
    TODA, S
    FUSION TECHNOLOGY, 1995, 27 : 497 - 500