Extinction Rate Fragility in Population Dynamics

被引:32
|
作者
Khasin, M. [1 ]
Dykman, M. I. [1 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
关键词
LARGE FLUCTUATIONS; EXIT PROBLEM; MODEL; SIS;
D O I
10.1103/PhysRevLett.103.068101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Population extinction is of central interest for population dynamics. It may occur from a large rare fluctuation. We find that, in contrast to related large-fluctuation effects like noise-induced interstate switching, quite generally extinction rates in multipopulation systems display fragility, where the height of the effective barrier to be overcome in the fluctuation depends on the system parameters nonanalytically. We show that one of the best-known models of epidemiology, the susceptible-infectious-susceptible model, is fragile to total population fluctuations.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Extinction in population dynamics
    Escudero, C
    Buceta, J
    de la Rubia, FJ
    Lindenberg, K
    [J]. PHYSICAL REVIEW E, 2004, 69 (02) : 021908 - 1
  • [2] Population dynamics with chaos and extinction
    Beardon, Alan F.
    Wakyiku, David
    [J]. AFRIKA MATEMATIKA, 2013, 24 (02) : 161 - 168
  • [3] Habitat size and extinction in population dynamics
    Escudero, C
    Buceta, J
    de la Rubia, FJ
    Lindenberg, K
    [J]. FLUCTUATIONS AND NOISE IN BIOLOGICAL, BIOPHYSICAL, AND BIOMEDICAL SYSTEMS II, 2004, 5467 : 112 - 122
  • [4] Extinction dynamics of a discrete population in an oasis
    Berti, Stefano
    Cencini, Massimo
    Vergni, Davide
    Vulpiani, Angelo
    [J]. PHYSICAL REVIEW E, 2015, 92 (01):
  • [5] The route to extinction: population dynamics of a threatened butterfly
    John F. McLaughlin
    Jessica J. Hellmann
    Carol L. Boggs
    Paul R. Ehrlich
    [J]. Oecologia, 2002, 132 : 538 - 548
  • [6] The route to extinction: population dynamics of a threatened butterfly
    McLaughlin, JF
    Hellmann, JJ
    Boggs, CL
    Ehrlich, PR
    [J]. OECOLOGIA, 2002, 132 (04) : 538 - 548
  • [7] DROSOPHILA POPULATION-DYNAMICS - CHAOS AND EXTINCTION
    PHILIPPI, TE
    CARPENTER, MP
    CASE, TJ
    GILPIN, ME
    [J]. ECOLOGY, 1987, 68 (01) : 154 - 159
  • [8] EQUILIBRIUM AND EXTINCTION IN STOCHASTIC POPULATION-DYNAMICS
    ROOZEN, H
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1987, 49 (06) : 671 - 696
  • [9] Catastrophic dynamics: How to avoid population extinction?
    Uchmanski, Janusz
    [J]. ECOLOGICAL MODELLING, 2023, 483