Extinction dynamics of a discrete population in an oasis

被引:6
|
作者
Berti, Stefano [1 ]
Cencini, Massimo [2 ]
Vergni, Davide [3 ]
Vulpiani, Angelo [2 ,4 ]
机构
[1] Univ Lille 1, CNRS, Lab Mecan Lille, UMR 8107, F-59650 Villeneuve Dascq, France
[2] CNR, Ist Sistemi Complessi, I-00185 Rome, Italy
[3] CNR, Ist Applicaz Calcolo, I-00185 Rome, Italy
[4] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 01期
关键词
QUASI-STATIONARY DISTRIBUTION; PERSISTENCE; DIFFUSION; INVASIONS; BEHAVIOR; VELOCITY; MODELS; DEATH; TIME;
D O I
10.1103/PhysRevE.92.012722
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Understanding the conditions ensuring the persistence of a population is an issue of primary importance in population biology. The first theoretical approach to the problem dates back to the 1950s with the Kierstead, Slobodkin, and Skellam (KiSS) model, namely a continuous reaction-diffusion equation for a population growing on a patch of finite size L surrounded by a deadly environment with infinite mortality, i.e., an oasis in a desert. The main outcome of the model is that only patches above a critical size allow for population persistence. Here we introduce an individual-based analog of the KiSS model to investigate the effects of discreteness and demographic stochasticity. In particular, we study the average time to extinction both above and below the critical patch size of the continuous model and investigate the quasistationary distribution of the number of individuals for patch sizes above the critical threshold.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Extinction in population dynamics
    Escudero, C
    Buceta, J
    de la Rubia, FJ
    Lindenberg, K
    [J]. PHYSICAL REVIEW E, 2004, 69 (02) : 021908 - 1
  • [2] Population dynamics with chaos and extinction
    Beardon, Alan F.
    Wakyiku, David
    [J]. AFRIKA MATEMATIKA, 2013, 24 (02) : 161 - 168
  • [3] Habitat size and extinction in population dynamics
    Escudero, C
    Buceta, J
    de la Rubia, FJ
    Lindenberg, K
    [J]. FLUCTUATIONS AND NOISE IN BIOLOGICAL, BIOPHYSICAL, AND BIOMEDICAL SYSTEMS II, 2004, 5467 : 112 - 122
  • [4] Extinction Rate Fragility in Population Dynamics
    Khasin, M.
    Dykman, M. I.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (06)
  • [5] The route to extinction: population dynamics of a threatened butterfly
    John F. McLaughlin
    Jessica J. Hellmann
    Carol L. Boggs
    Paul R. Ehrlich
    [J]. Oecologia, 2002, 132 : 538 - 548
  • [6] The route to extinction: population dynamics of a threatened butterfly
    McLaughlin, JF
    Hellmann, JJ
    Boggs, CL
    Ehrlich, PR
    [J]. OECOLOGIA, 2002, 132 (04) : 538 - 548
  • [7] DROSOPHILA POPULATION-DYNAMICS - CHAOS AND EXTINCTION
    PHILIPPI, TE
    CARPENTER, MP
    CASE, TJ
    GILPIN, ME
    [J]. ECOLOGY, 1987, 68 (01) : 154 - 159
  • [8] EQUILIBRIUM AND EXTINCTION IN STOCHASTIC POPULATION-DYNAMICS
    ROOZEN, H
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1987, 49 (06) : 671 - 696
  • [9] Catastrophic dynamics: How to avoid population extinction?
    Uchmanski, Janusz
    [J]. ECOLOGICAL MODELLING, 2023, 483
  • [10] Population Dynamics near an Oasis with Time-Dependent Convection
    T. Franosch
    David R. Nelson
    [J]. Journal of Statistical Physics, 2000, 99 : 1021 - 1030