Non-negative versus positive scalar curvature

被引:3
|
作者
Schick, Thomas [1 ]
Wraith, David J. [2 ]
机构
[1] Univ Gottingen, Mathemat Inst, Gottingen, Germany
[2] Natl Univ Ireland Maynooth, Dept Math & Stat, Maynooth, Kildare, Ireland
关键词
Harmonic spinors; Non-negative scalar curvature; Ricci flat metrics; INFINITE LOOP-SPACES; GROMOLL FILTRATION; MODULI SPACE; METRICS; MANIFOLDS; STABILITY; SPINORS;
D O I
10.1016/j.matpur.2020.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we look at the difference, or rather the absence of a difference, between the space of metrics of positive scalar curvature and metrics of non-negative scalar curvature. The main tool to analyze the former on a spin manifold is the spectral theory of the Dirac operator and refinements thereof. This can be used, for example, to distinguish between path components in the space of positive scalar curvature metrics. Despite the fact that non-negative scalar curvature a priori does not have the same spectral implications as positive scalar curvature, we show that all invariants based on the Dirac operator extend over the bigger space. Under mild conditions we show that the inclusion of the space of metrics of positive scalar curvature into that of non-negative scalar curvature is a weak homotopy equivalence. (C) 2020 The Authors. Published by Elsevier Masson SAS.
引用
收藏
页码:218 / 232
页数:15
相关论文
共 50 条
  • [21] Flats and submersions in non-negative curvature
    Pro, Curtis
    Wilhelm, Frederick
    [J]. GEOMETRIAE DEDICATA, 2012, 161 (01) : 109 - 118
  • [22] CONCAVITY AND RIGIDITY IN NON-NEGATIVE CURVATURE
    Verdiani, Luigi
    Ziller, Wolfgang
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2014, 97 (02) : 349 - 375
  • [23] THE HERMITIAN CURVATURE FLOW ON MANIFOLDS WITH NON-NEGATIVE GRIFFITHS CURVATURE
    Ustinovskiy, Yury
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (06) : 1751 - 1775
  • [24] Torus actions, maximality, and non-negative curvature
    Escher, Christine
    Searle, Catherine
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 780 : 221 - 264
  • [25] Homotopy invariants and almost non-negative curvature
    Bazzoni, Giovanni
    Lupton, Gregory
    Oprea, John
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (02) : 1117 - 1140
  • [26] Homotopy invariants and almost non-negative curvature
    Giovanni Bazzoni
    Gregory Lupton
    John Oprea
    [J]. Mathematische Zeitschrift, 2022, 300 : 1117 - 1140
  • [27] The p-Harmonic Capacity of an Asymptotically Flat 3-Manifold with Non-negative Scalar Curvature
    Jie Xiao
    [J]. Annales Henri Poincaré, 2016, 17 : 2265 - 2283
  • [28] The p-Harmonic Capacity of an Asymptotically Flat 3-Manifold with Non-negative Scalar Curvature
    Xiao, Jie
    [J]. ANNALES HENRI POINCARE, 2016, 17 (08): : 2265 - 2283
  • [29] NON-NEGATIVE EIGENFUNCTIONS OF BELTRAMI-LAPLACIAN OPERATOR ON SYMMETRIC SPACES OF NON-POSITIVE CURVATURE
    KARPELVI.FI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1963, 151 (06): : 1274 - &
  • [30] Positive properties of non-negative matrices
    Kogos, K. G.
    Fomichev, V. M.
    [J]. PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2012, 18 (04): : 5 - 13