Non-Volatile Memory and Disks: Avenues for Policy Architectures

被引:0
|
作者
Butler, Kevin R. B. [1 ]
McLaughlin, Stephen E. [1 ]
McDaniel, Patrick D. [1 ]
机构
[1] Penn State Univ, Dept Comp Sci & Engn, Syst & Informat Infrastruct Secur Lab, University Pk, PA 16802 USA
关键词
storage; security; labels; NVRAM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As computing models change, so too do the demands on storage. Distributed and virtualized systems introduce new vulnerabilities, assumptions, and performance requirements on disks. However, traditional storage systems have very limited capacity to implement needed "advanced storage" features such as integrity and data isolation. This is largely due to the simple interfaces and limited computing resources provided by commodity hard-drives. A new generation of storage devices affords better opportunities to meet these new models, but little is known about how to exploit them. In this paper, we show that the recently introduced fast-access non-volatile RAM-enhanced hybrid (HHD) disk architectures can be used to implement a range of valuable storage-security services. We specifically discuss the use of these new architectures to provide data integrity, capability-based access control, and labeled information flow at the disk access layer. In this, we introduce systems that place a security perimeter at the disk interface-and deal with the parent operating system only as a largely untrusted entity.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 50 条
  • [21] Embedded Non-Volatile Memory Technologies
    Shum, Danny
    CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2011 (CSTIC 2011), 2011, 34 (01): : 3 - 8
  • [22] Non-volatile memory and digital clocking
    Intel, Folsom, CA, United States
    不详
    Dig Tech Pap IEEE Int Solid State Circuits Conf, 2008, (504):
  • [23] Consensus for Non-Volatile Main Memory
    Huynh Tu Dang
    Hofmann, Jaco
    Liu, Yang
    Radi, Marjan
    Vucinic, Dejan
    Soule, Robert
    Pedone, Fernando
    2018 IEEE 26TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2018, : 406 - 411
  • [24] Non-volatile and Flash memory developments
    Neale, R
    ELECTRONIC ENGINEERING, 2001, 73 (898): : 11 - +
  • [25] Nanocrystal non-volatile memory devices
    Horvath, Zs. J.
    Basa, P.
    THIN FILMS AND POROUS MATERIALS, 2009, 609 : 1 - 9
  • [26] Heterogeneous Index for Non-volatile Memory
    Liu R.-C.
    Zhang J.-C.
    Luo Y.-P.
    Jin P.-Q.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 832 - 848
  • [27] Resistance non-volatile memory - RRAM
    Ignatiev, Alex
    Wu, Naijuan
    Chen, Xin
    Nian, Yibo
    Papagianni, Christina
    Liu, Shangqing
    Strozier, John
    MATERIALS AND PROCESSES FOR NONVOLATILE MEMORIES II, 2007, 997 : 181 - 189
  • [28] Introduction to non-volatile memory technologies
    Asadinia, Marjan
    Sarbazi-Azad, Hamid
    DURABLE PHASE-CHANGE MEMORY ARCHITECTURES, 2020, 118 : 1 - 13
  • [29] Data Management in Non-Volatile Memory
    Viglas, Stratis D.
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1707 - 1711
  • [30] ODOMETER USING NON-VOLATILE MEMORY
    YATES, P
    ELECTRONIC ENGINEERING, 1984, 56 (687): : 169 - 172