Using graphical models to infer multiple visual classification features

被引:2
|
作者
Ross, Michael G. [1 ]
Cohen, Andrew L. [2 ]
机构
[1] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[2] Univ Massachusetts, Amherst, MA 01003 USA
来源
JOURNAL OF VISION | 2009年 / 9卷 / 03期
关键词
image classification; multiple features; probabilistic model; Bayes net;
D O I
10.1167/9.3.23
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
This paper describes a new model for human visual classification that enables the recovery of image features that explain performance on different visual classification tasks. Unlike some common methods, this algorithm does not explain performance with a single linear classifier operating on raw image pixels. Instead, it models classification as the result of combining the output of multiple feature detectors. This approach extracts more information about human visual classification than has been previously possible with other methods and provides a foundation for further exploration.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Mobile robot visual navigation using multiple features
    Pears, N
    Liang, BJ
    Chen, ZZ
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2005, 2005 (14) : 2250 - 2259
  • [22] Mobile Robot Visual Navigation Using Multiple Features
    Nick Pears
    Bojian Liang
    Zezhi Chen
    EURASIP Journal on Advances in Signal Processing, 2005
  • [23] GENERATIVE MODELING OF TEMPORAL SIGNAL FEATURES USING HIERARCHICAL PROBABILISTIC GRAPHICAL MODELS
    Gang, Ren
    Bocko, Gregory
    Lundberg, Justin
    Headlam, Dave
    Bocko, Mark F.
    2011 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP AND IEEE SIGNAL PROCESSING EDUCATION WORKSHOP (DSP/SPE), 2011, : 307 - 312
  • [24] Multiple sequence alignment using biological features classification
    Besharati, Arezoo
    Mehrdadjalali
    2014 INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK), 2014,
  • [25] Classification of Heart Sound Signal Using Multiple Features
    Yaseen
    Son, Gui-Young
    Kwon, Soonil
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [26] Learning Graphical Models for Hypothesis Testing and Classification
    Tan, Vincent Y. F.
    Sanghavi, Sujay
    Fisher, John W., III
    Willsky, Alan S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (11) : 5481 - 5495
  • [27] Intelligent classification of web pages using contextual and visual features
    Ahmadi, Ali
    Fotouhi, Mehran
    Khaleghi, Mahmoud
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 1638 - 1647
  • [28] Speech/music classification using visual and spectral chromagram features
    Gajanan K. Birajdar
    Mukesh D. Patil
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 329 - 347
  • [29] Speech/music classification using visual and spectral chromagram features
    Birajdar, Gajanan K.
    Patil, Mukesh D.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (01) : 329 - 347
  • [30] ENDOMICROSCOPIC IMAGE RETRIEVAL AND CLASSIFICATION USING INVARIANT VISUAL FEATURES
    Andre, B.
    Vercauteren, T.
    Perchant, A.
    Buchner, A. M.
    Wallace, M. B.
    Ayache, N.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 346 - +