Using graphical models to infer multiple visual classification features

被引:2
|
作者
Ross, Michael G. [1 ]
Cohen, Andrew L. [2 ]
机构
[1] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[2] Univ Massachusetts, Amherst, MA 01003 USA
来源
JOURNAL OF VISION | 2009年 / 9卷 / 03期
关键词
image classification; multiple features; probabilistic model; Bayes net;
D O I
10.1167/9.3.23
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
This paper describes a new model for human visual classification that enables the recovery of image features that explain performance on different visual classification tasks. Unlike some common methods, this algorithm does not explain performance with a single linear classifier operating on raw image pixels. Instead, it models classification as the result of combining the output of multiple feature detectors. This approach extracts more information about human visual classification than has been previously possible with other methods and provides a foundation for further exploration.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Using different classification models in wheat grading utilizing visual features
    Basati, Zahra
    Rasekh, Mansour
    Abbaspour-Gilandeh, Yousef
    INTERNATIONAL AGROPHYSICS, 2018, 32 (02) : 225 - 235
  • [2] Using Bayesian Latent Gaussian Graphical Models to Infer Symptom Associations in Verbal Autopsies
    Li, Zehang Richard
    McComick, Tyler H.
    Clark, Samuel J.
    BAYESIAN ANALYSIS, 2020, 15 (03): : 781 - 807
  • [3] Classification of Depression and Its Severity Based on Multiple Audio Features Using a Graphical Convolutional Neural Network
    Ishimaru, Momoko
    Okada, Yoshifumi
    Uchiyama, Ryunosuke
    Horiguchi, Ryo
    Toyoshima, Itsuki
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2023, 20 (02)
  • [4] Visual Comparison of Graphical Models
    Schipper, Arne
    Fuhrmann, Hauke
    von Hanxleden, Reinhard
    2009 14TH IEEE INTERNATIONAL CONFERENCE ON ENGINEERING OF COMPLEX COMPUTER SYSTEMS (ICECCS), 2009, : 336 - 341
  • [5] Audio-visual speaker localization using graphical models
    Kushal, Akash
    Rahurkar, Mandar
    Li Fei-Fei
    Ponce, Jean
    Huang, Thomas
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2006, : 291 - +
  • [6] Movie classification using visual effect features
    Huang, Hui-Yu
    Shih, Weir-Sheng
    Hsu, Wen-Hsing
    2007 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS, VOLS 1 AND 2, 2007, : 295 - +
  • [7] Marginal and simultaneous predictive classification using stratified graphical models
    Nyman, Henrik
    Xiong, Jie
    Pensar, Johan
    Corander, Jukka
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2016, 10 (03) : 305 - 326
  • [8] Marginal and simultaneous predictive classification using stratified graphical models
    Henrik Nyman
    Jie Xiong
    Johan Pensar
    Jukka Corander
    Advances in Data Analysis and Classification, 2016, 10 : 305 - 326
  • [9] Novelty Detection Using Graphical Models for Semantic Room Classification
    Pinto, Andre Susano
    Pronobis, Andrzej
    Reis, Luis Paulo
    PROGRESS IN ARTIFICIAL INTELLIGENCE-BOOK, 2011, 7026 : 326 - +
  • [10] Robust respiratory disease classification using breathing sounds (RRDCBS) multiple features and models
    Revathi, A.
    Sasikaladevi, N.
    Arunprasanth, D.
    Amirtharajan, Rengarajan
    CURRENT SCIENCE, 2022, 122 (04): : 379 - 379