Hydride Formation Diminishes CO2 Reduction Rate on Palladium

被引:9
|
作者
Billeter, Emanuel [1 ,2 ]
Terreni, Jasmin [1 ,2 ]
Borgschulte, Andreas [1 ,2 ]
机构
[1] Empa, Swiss Fed Lab Mat Sci & Technol, Lab Adv Analyt Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Univ Zurich, Dept Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
catalysis; CO2; reduction; hydrogen; hydride; palladium; CARBON-DIOXIDE; HYDROGEN ABSORPTION; SUBSURFACE HYDROGEN; PD NANOPARTICLES; METAL HYDRIDE; SURFACE; ADSORPTION; METHANATION; ETHYLENE; CATALYST;
D O I
10.1002/cphc.201801081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic hydrogenation of CO2 includes the dissociation of hydrogen and further reaction with CO2 and intermediates. We investigate how the amount of hydrogen in the bulk of the catalyst affects the hydrogenation reaction taking place at the surface. For this, we developed an experimental setup described herein, based on a magnetic suspension balance and an infrared spectrometer, and measured pressure-composition isotherms of the Pd-H system under conditions relevant for CO2 reduction. The addition of CO2 has no influence on the measured hydrogen absorption isotherms. The pressure dependence of the CO formation rate changes suddenly upon formation of the -PdH phase. This effect is attributed to a smaller surface coverage of hydrogen due to repulsive electronic interactions affecting both bulk and surface hydrogen.
引用
下载
收藏
页码:1398 / 1403
页数:6
相关论文
共 50 条
  • [31] CO2 Hydrogenation to Formate and Formic Acid by Bimetallic Palladium-Copper Hydride Clusters
    Liu, Gaoxiang
    Poths, Patricia
    Zhang, Xinxing
    Zhu, Zhaoguo
    Marshall, Mary
    Blankenhorn, Moritz
    Alexandrova, Anastassia N.
    Bowen, Kit H.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (17) : 7930 - 7936
  • [32] Lattice-Hydride Mechanism in Electrocatalytic CO2 Reduction by Structurally Precise Copper-Hydride Nanoclusters
    Tang, Qing
    Lee, Yongjin
    Li, Dai-Ying
    Choi, Woojun
    Liu, C. W.
    Lee, Dongil
    Jiang, De-en
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (28) : 9728 - 9736
  • [33] Molecular Catalysts Boost the Rate of Electrolytic CO2 Reduction
    Torbensen, Kristian
    Joulie, Dorian
    Ren, Shaoxuan
    Wang, Min
    Salvatore, Danielle
    Berlinguette, Curtis P.
    Robert, Marc
    ACS ENERGY LETTERS, 2020, 5 (05) : 1512 - 1518
  • [34] Dependence of zinc oxide reduction rate on the CO concentration in CO/CO2 mixtures
    Gonzalez, C
    Jordens, ZS
    Escobedo, S
    THERMOCHIMICA ACTA, 1996, 278 : 129 - 134
  • [35] Role of pyridine as a biomimetic organo-hydride for homogeneous reduction of CO2 to methanol
    Musgrave, Charles B.
    Lim, Chern-Hooi
    Holder, Aaron
    Hynes, James T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [36] FORMATION OF A METAL HYDRIDE BOND AND THE INSERTION OF CO2 - KEY STEPS IN THE ELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE TO FORMATE ANION
    PUGH, JR
    BRUCE, MRM
    SULLIVAN, BP
    MEYER, TJ
    INORGANIC CHEMISTRY, 1991, 30 (01) : 86 - 91
  • [37] Multistep Reaction Pathway for CO2 Reduction on Hydride-Capped Si Nanosheets
    Xia, Lixue
    Liao, Xiaobin
    He, Qiu
    Wang, Huan
    Zhao, Yan
    Truhlar, Donald G.
    CHEMCATCHEM, 2020, 12 (03) : 722 - 725
  • [38] Solvent-Controlled CO2 Reduction by a Triphos-Iron Hydride Complex
    Iffland, Linda
    Khedkar, Abhishek
    Petuker, Anette
    Lieb, Max
    Wittkamp, Florian
    van Gastel, Maurice
    Roemelt, Michael
    Apfel, Ulf-Peter
    ORGANOMETALLICS, 2019, 38 (02) : 289 - 299
  • [39] Effect of CO2 Reactivity on NOx Formation and Reduction Mechanisms in O2/CO2 Combustion
    Watanabe, Hirotatsu
    Marumo, Takashi
    Okazaki, Ken
    ENERGY & FUELS, 2012, 26 (02) : 938 - 951
  • [40] Tailoring the Selectivity of Bimetallic Copper-Palladium Nanoalloys for Electrocatalytic Reduction of CO2 to CO
    Chen, Dong
    Yao, Qaofeng
    Cui, Penglei
    Liu, Hui
    Xie, Jianping
    Yang, Jun
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (02): : 883 - 890