An unsupervised approach for automotive driver identification Poster Abstract

被引:4
|
作者
Mainardi, Nicholas [1 ]
Zanella, Michele [1 ]
Reghenzani, Federico [1 ]
Raspa, Niccolo [2 ]
Brandolese, Carlo [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Milan, Italy
[2] Politecn Milan, Scuola Ingn Ind & Informaz, Milan, Italy
基金
欧盟地平线“2020”;
关键词
DRIVING STYLE RECOGNITION;
D O I
10.1145/3285017.3285023
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The adoption of on-vehicle monitoring devices allows different entities to gather valuable data about driving styles, which can be further used to infer a variety of information for different purposes, such as fraud detection and driver profiling. In this paper, we focus on the identification of the number of people usually driving the same vehicle, proposing a data analytic work-flow specifically designed to address this problem. Our approach is based on unsupervised learning algorithms working on non-invasive data gathered from a specialized embedded device. In addition, we present a preliminary evaluation of our approach, showing promising driver identification capabilities and a limited computational effort.
引用
收藏
页码:51 / 52
页数:2
相关论文
共 50 条
  • [41] POSTER: Blockchain Abstract Data Type
    Anceaume, Emmanuelle
    Del Pozzo, Antonella
    Ludinard, Romaric
    Potop-Butucaru, Maria
    Tucci-Piergiovanni, Sara
    PROCEEDINGS OF THE 24TH SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING (PPOPP '19), 2019, : 439 - 440
  • [42] Poster Abstract: Resource Hunting on the Edge
    Salem, Ahmed
    Desai, Nirmit
    Salonidis, Theodoros
    Nadeem, Tamer
    2016 FIRST IEEE/ACM SYMPOSIUM ON EDGE COMPUTING (SEC 2016), 2016, : 83 - 84
  • [43] An Unsupervised Approach for Inferring Driver Behavior From Naturalistic Driving Data
    Bender, Asher
    Agamennoni, Gabriel
    Ward, James R.
    Worrall, Stewart
    Nebot, Eduardo M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, 16 (06) : 3325 - 3336
  • [44] Late Breaking Poster Abstract Sessions
    Assarehzadegan, M.
    Sankian, M.
    Varasteh, A.
    ALLERGY, 2009, 64 : 551 - 552
  • [45] Anomaly Detection in the Automotive Stamping Process: An Unsupervised Machine Learning Approach
    Zhang, J.
    Creighton, D.
    Lim, C. P.
    Rolfe, B.
    Weiss, M.
    Neiat, A.
    Zaslavsky, A.
    Nguyen, T.
    Navaei, J.
    Gamasaee, R.
    Barresi, B.
    Novak, M.
    43RD INTERNATIONAL DEEP DRAWING RESEARCH GROUP, IDDRG CONFERENCE, 2024, 2024, 1307
  • [46] Poster Abstract: Software Verification for TinyOS
    Bucur, Doina
    Kwiatkowska, Marta Z.
    PROCEEDINGS OF THE 9TH ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, 2010, : 400 - 401
  • [47] A new Unsupervised Approach to Fault Detection and Identification
    Jales Costa, Bruno Sielly
    Angelov, Plamen Parvanov
    Guedes, Luiz Affonso
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 1557 - 1564
  • [48] A Multilingual Approach for Unsupervised Search Task Identification
    Lugo, Luis
    Moreno, Jose G.
    Hubert, Gilles
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2041 - 2044
  • [49] Unsupervised Anomaly Detection Approach for Cyberattack Identification
    Segurola-Gil, Lander
    Moreno-Moreno, Mikel
    Irigoien, Itziar
    Florez-Tapia, Ane Miren
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (11) : 5291 - 5302
  • [50] Poster Abstract: A Multi-source Unsupervised Domain Adaptation Method for Wearable Sensor based Human Activity Recognition
    Zhang, Baiqiang
    Zheng, Rong
    Liu, Jie
    IPSN'21: PROCEEDINGS OF THE 20TH ACM/IEEE CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, 2021, : 410 - 411