Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway

被引:28
|
作者
Borgstrom, Celina [1 ]
Wasserstrom, Lisa [1 ,5 ]
Almqvist, Henrik [2 ]
Broberg, Kristina [2 ,6 ]
Klein, Bianca [3 ]
Noack, Stephan [3 ,4 ]
Liden, Gunnar [2 ]
Gorwa-Grauslund, Marie F. [1 ]
机构
[1] Lund Univ, Dept Chem, Div Appl Microbiol, POB 124, S-22100 Lund, Sweden
[2] Lund Univ, Dept Chem Engn, POB 124, S-22100 Lund, Sweden
[3] Forschungszentrum Julich, IBG Biotechnol 1, Inst Bio & Geosci, D-52425 Julich, Germany
[4] Forschungszentrum Julich, Bioecon Sci Ctr BioSC, D-52425 Julich, Germany
[5] Lund Univ Hosp, Dept Clin Microbiol, Div Lab Med, Lund, Sweden
[6] RISE AB, Ideon Sci Pk,Beta5,Scheelevagen 17, S-22370 Lund, Sweden
基金
瑞典研究理事会;
关键词
Xylose; Weimberg pathway; alpha-ketoglutarate semialdehyde dehydrogenase; Saccharomyces cerevisiae; alpha-ketoglutarate; CORYNEBACTERIUM-GLUTAMICUM; METABOLISM; ACID; OXIDATION;
D O I
10.1016/j.ymben.2019.05.010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The most prevalent xylose-assimilating pathways in recombinant Saccharomyces cerevisiae, i.e. the xylose isomerase (XI) and the xylose reductase/xylitol dehydrogenase (XR/XDH) pathways, channel the carbon flux through the pentose phosphate pathway and further into glycolysis. In contrast, the oxidative and non-phosphorylative bacterial Weimberg pathway channels the xylose carbon through five steps into the metabolic node alpha-ketoglutarate (alpha KG) that can be utilized for growth or diverted into production of various metabolites. In the present study, steps preventing the establishment of a functional Weimberg pathway in S. cerevisiae were identified. Using an original design where a S. cerevisiae strain was expressing the essential four genes of the Caulobacter crescentus pathway (xylB, xylD, xylK, xylA) together with a deletion of FRA2 gene to upregulate the iron-sulfur metabolism, it was shown that the C. crescentus alpha KG semialdehyde dehydrogenase, XylA was not functional in S. cerevisiae. When replaced by the recently described analog from Corynebacterium glutamicum, KsaD, significantly higher in vitro activity was observed but the strain did not grow on xylose. Adaptive laboratory evolution (ALE) on a xylose/glucose medium on this strain led to a loss of XylB, the first step of the Weimberg pathway, suggesting that ALE favored minimizing the inhibiting xylonate accumulation by restricting the upper part of the pathway. Therefore three additional gene copies of the lower Weimberg pathway (XylD, XylX and KsaD) were introduced. The resulting S. cerevisiae strain (Delta Delta fra2, xylB, 4x (xylD-xylX-ksaD)) was able to generate biomass from xylose and Weimberg pathway intermediates were detected. To our knowledge this is the first report of a functional complete Weimberg pathway expressed in fungi. When optimized this pathway has the potential to channel xylose towards value-added specialty chemicals such as dicarboxylic acids and diols.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] Exploring d-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway
    Lisa Wasserstrom
    Diogo Portugal-Nunes
    Henrik Almqvist
    Anders G. Sandström
    Gunnar Lidén
    Marie F. Gorwa-Grauslund
    AMB Express, 8
  • [2] Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway
    Wasserstrom, Lisa
    Portugal-Nunes, Diogo
    Almqvist, Henrik
    Sandstrom, Anders G.
    Liden, Gunnar
    Gorwa-Grauslund, Marie F.
    AMB EXPRESS, 2018, 8
  • [3] Xylose utilisation by recombinant strains of Saccharomyces cerevisiae on different carbon sources
    W. H. van Zyl
    A. Eliasson
    T. Hobley
    B. Hahn-Hägerdal
    Applied Microbiology and Biotechnology, 1999, 52 : 829 - 833
  • [4] Xylose utilisation by recombinant strains of Saccharomyces cerevisiae on different carbon sources
    van Zyl, WH
    Eliasson, A
    Hobley, T
    Hahn-Hägerdal, B
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1999, 52 (06) : 829 - 833
  • [5] Influence of individual HXT transporters in xylose fermentation by recombinant Saccharomyces cerevisiae strains
    Davi Ludvig Gonçalves
    Akinori Matsushika
    Belisa Bordin de Sales
    Margareth Patiño Lagos
    Tetsuya Goshima
    Boris Stambuk
    BMC Proceedings, 8 (Suppl 4)
  • [6] Engineering Saccharomyces cerevisiae for growth on xylose using an oxidative pathway
    Tanaka, Kenya
    Yukawa, Takahiro
    Bamba, Takahiro
    Wakiya, Miho
    Kumokita, Ryota
    Jin, Yong-Su
    Kondo, Akihiko
    Hasunuma, Tomohisa
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2025, 109 (01)
  • [7] Endogenous xylose pathway in Saccharomyces cerevisiae
    Toivari, MH
    Salusjärvi, L
    Ruohonen, L
    Penttilä, M
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (06) : 3681 - 3686
  • [8] Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains
    Kato, Hiroko
    Suyama, Hiroaki
    Yamada, Ryosuke
    Hasunuma, Tomohisa
    Kondo, Akihiko
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 94 (06) : 1585 - 1592
  • [9] Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains
    Hiroko Kato
    Hiroaki Suyama
    Ryosuke Yamada
    Tomohisa Hasunuma
    Akihiko Kondo
    Applied Microbiology and Biotechnology, 2012, 94 : 1585 - 1592
  • [10] Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae
    Gárdonyi, M
    Jeppsson, M
    Lidén, G
    Gorwa-Grausland, MF
    Hahn-Hägerdal, B
    BIOTECHNOLOGY AND BIOENGINEERING, 2003, 82 (07) : 818 - 824