Endogenous xylose pathway in Saccharomyces cerevisiae

被引:18
|
作者
Toivari, MH [1 ]
Salusjärvi, L [1 ]
Ruohonen, L [1 ]
Penttilä, M [1 ]
机构
[1] VTT Biotechnol, FIN-02044 Espoo, Finland
关键词
D O I
10.1128/aem.70.6.3681-3686.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The baker's yeast Saccharomyces cerevisiae is generally classified as a non-xylose-utilizing organism. We found that S. cerevisiae can grow on D-xylose when only the endogenous genes GRE3 (YHR104w), coding for a nonspecific aldose reductase, and XYL2 (YLR070c, ScXYL2), coding for a xylitol dehydrogenase (XDH), are overexpressed under endogenous promoters. In nontransformed S. cerevisiae strains, XDH activity was significantly higher in the presence of xylose, but xylose reductase (XR) activity was not affected by the choice of carbon source. The expression of SOR1, encoding a sorbitol dehydrogenase, was elevated in the presence of xylose as were the genes encoding transketolase and transaldolase. An S. cerevisiae strain carrying the XR and XDH enzymes from the xylose-utilizing yeast Pichia stipitis grew more quickly and accumulated less xylitol than did the strain overexpressing the endogenous enzymes. Overexpression of the GRE3 and ScXYL2 genes in the S. cerevisiae CEN.PK2 strain resulted in a growth rate of 0.01 g of cell dry mass liter(-1) h(-1) and a xylitol yield of 55% when xylose was the main carbon source.
引用
收藏
页码:3681 / 3686
页数:6
相关论文
共 50 条
  • [1] Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes
    Jin Konishi
    Akira Fukuda
    Kozue Mutaguchi
    Takeshi Uemura
    Biotechnology Letters, 2015, 37 : 1623 - 1630
  • [2] Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes
    Konishi, Jin
    Fukuda, Akira
    Mutaguchi, Kozue
    Uemura, Takeshi
    BIOTECHNOLOGY LETTERS, 2015, 37 (08) : 1623 - 1630
  • [3] ENGINEERING OF XYLOSE METABOLIC PATHWAY IN SACCHAROMYCES-CEREVISIAE
    HO, NWY
    DENG, SXX
    CHEN, JD
    FASEB JOURNAL, 1991, 5 (06): : A1510 - A1510
  • [4] Engineering Saccharomyces cerevisiae for growth on xylose using an oxidative pathway
    Tanaka, Kenya
    Yukawa, Takahiro
    Bamba, Takahiro
    Wakiya, Miho
    Kumokita, Ryota
    Jin, Yong-Su
    Kondo, Akihiko
    Hasunuma, Tomohisa
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2025, 109 (01)
  • [5] DIRECT EVIDENCE FOR A XYLOSE METABOLIC PATHWAY IN SACCHAROMYCES-CEREVISIAE
    BATT, CA
    CARVALLO, S
    EASSON, DD
    AKEDO, M
    SINSKEY, AJ
    BIOTECHNOLOGY AND BIOENGINEERING, 1986, 28 (04) : 549 - 553
  • [6] Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae
    Ying Wang
    Wen-Long Shi
    Xiang-Yong Liu
    Yu Shen
    Xiao-Ming Bao
    Feng-Wu Bai
    Yin-Bo Qu
    Biotechnology Letters, 2004, 26 : 885 - 890
  • [7] Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae
    Wang, Y
    Shi, WL
    Liu, XY
    Shen, Y
    Bao, XM
    Bai, FW
    Qu, YB
    BIOTECHNOLOGY LETTERS, 2004, 26 (11) : 885 - 890
  • [8] Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae
    Qi, Xin
    Zha, Jian
    Liu, Gao-Gang
    Zhang, Weiwen
    Li, Bing-Zhi
    Yuan, Ying-Jin
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [9] Endogenous 2μ Plasmid Editing for Pathway Engineering in Saccharomyces cerevisiae
    Zeng, Bo-Xuan
    Yao, Ming-Dong
    Xiao, Wen-Hai
    Luo, Yun-Zi
    Wang, Ying
    Yuan, Ying-Jin
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [10] Harnessing the Endogenous 2μ Plasmid of Saccharomyces cerevisiae for Pathway Construction
    Yang, Jing
    Tian, Yujuan
    Liu, Huayi
    Kan, Yeyi
    Zhou, Yi
    Wang, Ying
    Luo, Yunzi
    FRONTIERS IN MICROBIOLOGY, 2021, 12