Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies

被引:17
|
作者
Yan, Huihuang [1 ,2 ]
Tian, Shulan [1 ]
Slager, Susan L. [1 ]
Sun, Zhifu [1 ,2 ]
Ordog, Tamas [2 ,3 ,4 ]
机构
[1] Mayo Clin, Dept Hlth Sci Res, Div Biomed Stat & Informat, Rochester, MN 55905 USA
[2] Mayo Clin, Ctr Individualized Med, Rochester, MN USA
[3] Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN USA
[4] Mayo Clin, Div Gastroenterol & Hepatol, Rochester, MN USA
基金
美国国家卫生研究院;
关键词
cancer; complex diseases; DNA methylation; epigenome; histone modification; CHIP-SEQ DATA; DIFFERENTIAL DNA METHYLATION; CHROMATIN STATE DYNAMICS; NON-CPG METHYLATION; HISTONE MODIFICATIONS; HIGH-THROUGHPUT; METHYLOME-WIDE; INTEGRATIVE ANALYSIS; REGULATORY ELEMENTS; CANCER EPIGENETICS;
D O I
10.1093/aje/kwv187
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Epigenetic information encoded in covalent modifications of DNA and histone proteins regulates fundamental biological processes through the action of chromatin regulators, transcription factors, and noncoding RNA species. Epigenetic plasticity enables an organism to respond to developmental and environmental signals without genetic changes. However, aberrant epigenetic control plays a key role in pathogenesis of disease. Normal epigenetic states could be disrupted by detrimental mutations and expression alteration of chromatin regulators or by environmental factors. In this primer, we briefly review the epigenetic basis of human disease and discuss how recent discoveries in this field could be translated into clinical diagnosis, prevention, and treatment. We introduce platforms for mapping genome-wide chromatin accessibility, nucleosome occupancy, DNA-binding proteins, and DNA methylation, primarily focusing on the integration of DNA methylation and chromatin immunoprecipitation-sequencing technologies into disease association studies. We highlight practical considerations in applying high-throughput epigenetic assays and formulating analytical strategies. Finally, we summarize current challenges in sample acquisition, experimental procedures, data analysis, and interpretation and make recommendations on further refinement in these areas. Incorporating epigenomic testing into the clinical research arsenal will greatly facilitate our understanding of the epigenetic basis of disease and help identify novel therapeutic targets.
引用
收藏
页码:96 / 109
页数:14
相关论文
共 50 条
  • [21] Disease coverage of human genome-wide association studies and pharmaceutical research and development
    Gordillo-Maranon, Maria
    Schmidt, Amand F.
    Warwick, Alasdair
    Tomlinson, Chris
    Ytsma, Cai
    Engmann, Jorgen
    Torralbo, Ana
    Maclean, Rory
    Sofat, Reecha
    Langenberg, Claudia
    Shah, Anoop D.
    Denaxas, Spiros
    Pirmohamed, Munir
    Hemingway, Harry
    Hingorani, Aroon D.
    Finan, Chris
    COMMUNICATIONS MEDICINE, 2024, 4 (01):
  • [22] Genome-wide assays that identify and quantify modified cytosines in human disease studies
    Netha Ulahannan
    John M Greally
    Epigenetics & Chromatin, 8
  • [23] Lipotoxicity alters the genome-wide epigenetic pattern in human pancreatic islets
    Ling, C. A.
    Hall, E.
    Volkov, P.
    Dayeh, T.
    Bacos, K.
    Ronn, T.
    Nitert, M. Dekker
    DIABETOLOGIA, 2014, 57 : S196 - S197
  • [24] Regular exercise and genome-wide epigenetic modifications in human muscle and fat
    Ling, C.
    ACTA PHYSIOLOGICA, 2014, 211 : 33 - 33
  • [25] Integrative analysis of genome-wide genetic and epigenetic changes in human osteosarcomas
    Kresse, S. H.
    Rydbeck, H.
    Barragan-Polania, A. H.
    Duim, R.
    Cleton-Jansen, A. M.
    Myklebost, O.
    Meza-Zepeda, L. A.
    EJC SUPPLEMENTS, 2010, 8 (05): : 200 - 200
  • [26] Are there subtle genome-wide epigenetic alterations in normal offspring conceived by assisted reproductive technologies?
    Batcheller, April
    Cardozo, Eden
    Maguire, Marcy
    DeCherney, Alan H.
    Segars, James H.
    FERTILITY AND STERILITY, 2011, 96 (06) : 1306 - 1311
  • [27] Genome-Wide Multi-Omic Analysis of Paediatric Pancreatoblastoma
    Isobe, T.
    Seki, M.
    Yoshida, K.
    Iguchi, A.
    Hama, A.
    Taguchi, T.
    Tanaka, Y.
    Akiyama, M.
    Fujimura, J.
    Inoue, A.
    Ito, T.
    Deguchi, T.
    Kato, M.
    Kiyotani, C.
    Yagyu, S.
    Iehara, T.
    Hosoi, H.
    Miyano, S.
    Ogawa, S.
    Takita, J.
    PEDIATRIC BLOOD & CANCER, 2016, 63 : S25 - S26
  • [28] From Genotype to Phenotype A Primer on the Functional Follow-Up of Genome-Wide Association Studies in Cardiovascular Disease
    Lin, Jennie
    Musunuru, Kiran
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2018, 11 (02):
  • [29] Genome-wide association studies of diabetic kidney disease
    Ahlqvist, E.
    Deshmukh, H. A.
    Sandholm, N.
    Ladenvall, C.
    Van Zuydam, N.
    Lajer, M.
    Marcovecchio, L.
    Rurali, E.
    Rayner, W. N.
    DIABETOLOGIA, 2014, 57 : S45 - S45
  • [30] Genome-wide association studies in Alzheimer's disease
    Bertram, Lars
    Tanzi, Rudolph E.
    HUMAN MOLECULAR GENETICS, 2009, 18 : R137 - R145