Rate synchronization signal in neural as a deterministic spike trains

被引:0
|
作者
Ortega, GJ
Bongard, M
Louis, E
Fernandez, E
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Miguel Hernandez, Inst Bioingn, Alicante 03550, Spain
[4] Univ Alicante, Dept Fis Aplicada, E-03080 Alicante, Spain
[5] Univ Alicante, Unidad Asociada, Consejo Super Invest Cient, E-03080 Alicante, Spain
关键词
synchronization; neural code; ganglion cells;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a simple method to analyze recorded spike trains in sensory neurons that allows to reveal deterministic aspects of spiking dynamics. In particular, events with an associated firing rate f(r), are defined whenever two successive spikes on a given cell alpha occur at times t(i)(alpha), and t(i-1)(alpha) such that (f(r)+Deltaf(r))(-1) < \t(i)(alpha) - t(i-1)(alpha)\ < (f(r) - Deltaf(r))(-1), for a given Deltaf(r). We then look for synchronization of those events on different cells. Our results show that synchronized events are sharply correlated with stimuli. The method is used to analyze experimental time series obtained on retinal ganglion cells and synthetic time series. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1145 / 1151
页数:7
相关论文
共 50 条
  • [31] Spike Sorting by Joint Probabilistic Modeling of Neural Spike Trains and Waveforms
    Matthews, Brett A.
    Clements, Mark A.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2014, 2014
  • [32] Reconstruction of Underlying Nonlinear Deterministic Dynamics Embedded in Noisy Spike Trains
    Asai, Yoshiyuki
    Villa, Alessandro E. P.
    JOURNAL OF BIOLOGICAL PHYSICS, 2008, 34 (3-4) : 325 - 340
  • [33] Reconstruction of Underlying Nonlinear Deterministic Dynamics Embedded in Noisy Spike Trains
    Yoshiyuki Asai
    Alessandro E. P. Villa
    Journal of Biological Physics, 2008, 34 : 325 - 340
  • [34] Infinite Spike Trains in Spiking Neural P Systems
    Paun, Gheorghe
    Perez-Jimenez, Mario J.
    Rozenberg, Grzegorz
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2023, 26 (3-4): : 251 - 275
  • [35] Analysis of neural spike trains with interspike interval reconstruction
    Suzuki, H
    Aihara, K
    Murakami, J
    Shimozawa, T
    BIOLOGICAL CYBERNETICS, 2000, 82 (04) : 305 - 311
  • [36] A history of spike trains as Point Processes in neural coding
    Pedro Segundo, Jose
    JOURNAL OF PHYSIOLOGY-PARIS, 2010, 104 (3-4) : 156 - 159
  • [37] Maximum entropy decoding of multivariate neural spike trains
    Hélène Seiler
    Yang Zhang
    Aman B Saleem
    Phil Bream
    John Apergis-Schoute
    Simon R Schultz
    BMC Neuroscience, 10 (Suppl 1)
  • [38] Some thoughts about neural coding and spike trains
    Segundo, JP
    BIOSYSTEMS, 2000, 58 (1-3) : 3 - 7
  • [39] A Simple Model for Low Variability in Neural Spike Trains
    Ferrari, Ulisse
    Deny, Stephane
    Marre, Olivier
    Mora, Thierry
    NEURAL COMPUTATION, 2018, 30 (11) : 3009 - 3036
  • [40] Inferring neural connectivity from multiple spike trains
    Won Sup Kim
    Seon Young Ryu
    Seung Kee Han
    BMC Neuroscience, 8 (Suppl 2)