Quantization of the O(N) nonlinear sigma model

被引:1
|
作者
Muslih, SI [1 ]
机构
[1] Al Azhar Univ, Dept Phys, Gaza, Israel
关键词
Hamiltonian and Lagrangian approach; Hamilton-Jacobi method; nonlinear sigma model; quantization of field systems;
D O I
10.1088/0253-6102/37/5/567
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamilton-Jacobi method of quantizing singular systems is discussed. The equations of motion are obtained as total differential equations in many variables. It is shown that if the system is integrable, one can obtain the canonical phase space coordinates and set of canonical Hamilton-Jacobi partial differential equations without any need to introduce unphysical auxiliary fields. As an example we quantize the O(2) nonlinear sigma model using two different approaches: the functional Schrodinger method to obtain the wave functionals for the ground and the exited state and then we quantize the same model using the canonical path integral quantization as an integration over the canonical phase-space coordinates.
引用
收藏
页码:567 / 570
页数:4
相关论文
共 50 条
  • [21] THE VACUUM-STRUCTURE OF THE O(N) NONLINEAR SIGMA MODEL
    GAZTELURRUTIA, TD
    DAVIS, AC
    NUCLEAR PHYSICS B, 1990, 347 (1-2) : 319 - 332
  • [22] Non-Abelian BFFT embedding, Schrodinger quantization and the field-antifield anomaly of the O(N) nonlinear sigma model
    de Abreu, M. C.
    Ananias Neto, J.
    Mendes, A. C. R.
    Oliveira-Neto, G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (01):
  • [23] Solving formally the auxiliary system of O(N) nonlinear sigma model
    Katsinis, Dimitrios
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [24] Toroidal soliton solutions in O(3)N nonlinear sigma model
    Wereszczynski, A
    MODERN PHYSICS LETTERS A, 2004, 19 (34) : 2569 - 2578
  • [25] Hamilton-Jacobi formulation of the O(N) nonlinear sigma model
    Muslih, SI
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (12): : 1205 - 1212
  • [26] ON THE IR-FINITENESS OF THE NONLINEAR O(N) SIGMA-MODEL
    BALASIN, H
    KUMMER, W
    SCHWEDA, M
    PIGUET, O
    MODERN PHYSICS LETTERS A, 1994, 9 (37) : 3487 - 3493
  • [27] Nonlinear sigma model in the Faddeev-Jackiw quantization formalism
    A. Foussats
    C. Repetto
    O. P. Zandron
    O. S. Zandron
    International Journal of Theoretical Physics, 1997, 36 : 2923 - 2935
  • [29] Nonlinear sigma model in the Faddeev-Jackiw quantization formalism
    Foussats, A
    Repetto, C
    Zandron, OP
    Zandron, OS
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (12) : 2923 - 2935
  • [30] SOME EXACT RESULTS FOR THE O(N)-SYMMETRICAL NONLINEAR SIGMA-MODEL TO O(1/N)
    FLYVBJERG, H
    NUCLEAR PHYSICS B, 1991, 348 (03) : 714 - 736