Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology

被引:86
|
作者
Bouteldja, Nassim [1 ]
Klinkhammer, Barbara M. [2 ,3 ]
Buelow, Roman D. [2 ]
Droste, Patrick [2 ]
Otten, Simon W. [2 ]
Freifrau von Stillfried, Saskia [2 ]
Moellmann, Julia [4 ]
Sheehan, Susan M. [5 ]
Korstanje, Ron [5 ]
Menzel, Sylvia [3 ]
Bankhead, Peter [6 ,7 ]
Mietsch, Matthias [8 ]
Drummer, Charis [9 ]
Lehrke, Michael [4 ]
Kramann, Rafael [3 ,10 ]
Floege, Juergen [3 ]
Boor, Peter [2 ,3 ]
Merhof, Dorit [1 ,11 ]
机构
[1] Rhein Westfal TH Aachen, Inst Imaging & Comp Vis, Aachen, Germany
[2] RWTH Aachen Univ Hosp, Inst Pathol, Pauwelsstr 30, D-52074 Aachen, Germany
[3] RWTH Aachen Univ Hosp, Dept Nephrol & Immunol, Aachen, Germany
[4] RWTH Aachen Univ Hosp, Dept Cardiol & Vasc Med, Aachen, Germany
[5] Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA
[6] Univ Edinburgh, Edinburgh Pathol, Edinburgh, Midlothian, Scotland
[7] Univ Edinburgh, Inst Genet & Mol Med, Edinburgh, Midlothian, Scotland
[8] German Primate Ctr, Lab Anim Sci Unit, Gottingen, Germany
[9] German Primate Ctr, Platform Degenerat Dis, Gottingen, Germany
[10] Erasmus MC, Dept Internal Med Nephrol & Transplantat, Rotterdam, Netherlands
[11] Fraunhofer Inst Digital Med MEVIS, Bremen, Germany
来源
关键词
digital pathology; segmentation; histopathology; animal model; CLASSIFICATION; NETWORK;
D O I
10.1681/ASN.2020050597
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Nephropathologic analyses provide important outcomes-related data in experiments with the animal models that are essential for understanding kidney disease pathophysiology. Precision medicine increases the demand forquantitative, unbiased, reproducible, and efficient histopathologic analyses, which will require novel high-throughput tools. A deep learning technique, the convolutional neural network, is increasingly applied in pathology because of its high performance in tasks like histology segmentation. MethodsWeinvestigated use of a convolutional neural network architecture for accurate segmentation of periodic acid-Schiff-stained kidney tissue from healthy mice and five murine disease models and from other species used in preclinical research. We trained the convolutional neural network to segment six major renal structures: glomerular tuft, glomerulus including Bowman's capsule, tubules, arteries, arterial lumina, and veins. To achieve high accuracy, we performed a large number of expert-based annotations, 72,722 in total. Results Multiclass segmentation performancewas very high in all diseasemodels. The convolutional neural network allowed high-throughput and large-scale, quantitative and comparative analyses of various models. In disease models, computational feature extraction revealed interstitial expansion, tubular dilation and atrophy, and glomerular size variability. Validation showed a high correlation of findings with current standardmorphometric analysis. The convolutional neural network also showed high performance in other species used in research-including rats, pigs, bears, and marmosets-as well as in humans, providing a translational bridge between preclinical and clinical studies. Conclusions We developed a deep learning algorithm for accurate multiclass segmentation of digital whole-slide images of periodic acid-Schiff-stained kidneys fromvarious species and renal diseasemodels. This enables reproducible quantitative histopathologic analyses in preclinical models that also might be applicable to clinical studies.
引用
收藏
页码:52 / 68
页数:17
相关论文
共 50 条
  • [41] Deep Learning-Based Histopathologic Assessment of Kidney Tissue
    Hermsen, Meyke
    de Bel, Thomas
    den Boer, Marjolijn
    Steenbergen, Eric J.
    Kers, Jesper
    Florquin, Sandrine
    Roelofs, Joris J. T. H.
    Stegall, Mark D.
    Alexander, Mariam P.
    Smith, Byron H.
    Smeets, Bart
    Hilbrands, Luuk B.
    van der Laak, Jeroen A. W. M.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 30 (10): : 1968 - 1979
  • [42] Deep learning-based molecular morphometrics for kidney biopsies
    Zimmermann, Marina
    Klaus, Martin
    Wong, Milagros N.
    Thebille, Ann-Katrin
    Gernhold, Lukas
    Kuppe, Christoph
    Halder, Maurice
    Kranz, Jennifer
    Wanner, Nicola
    Braun, Fabian
    Wulf, Sonia
    Wiech, Thorsten
    Panzer, Ulf
    Krebs, Christian F.
    Hoxha, Elion
    Kramann, Rafael
    Huber, Tobias B.
    Bonn, Stefan
    Puelles, Victor G.
    [J]. JCI INSIGHT, 2021, 6 (07)
  • [43] Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains
    Jayapandian, Catherine P.
    Chen, Yijiang
    Janowczyk, Andrew R.
    Palmer, Matthew B.
    Cassol, Clarissa A.
    Sekulic, Miroslav
    Hodgin, Jeffrey B.
    Zee, Jarcy
    Hewitt, Stephen M.
    O'Toole, John
    Toro, Paula
    Sedor, John R.
    Barisoni, Laura
    Madabhushi, Anant
    [J]. KIDNEY INTERNATIONAL, 2021, 99 (01) : 86 - 101
  • [44] A deep learning-based precision volume calculation approach for kidney and tumor segmentation on computed tomography images
    Hsiao, Chiu-Han
    Sun, Tzu-Lung
    Lin, Ping-Cherng
    Peng, Tsung-Yu
    Chen, Yu-Hsin
    Cheng, Chieh-Yun
    Yang, Feng-Jung
    Yang, Shao-Yu
    Wu, Chih-Horng
    Lin, Frank Yeong-Sung
    Huang, Yennun
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [45] Deep Learning-Based Semantic Segmentation Methods for Pavement Cracks
    Zhang, Yu
    Gao, Xin
    Zhang, Hanzhong
    [J]. INFORMATION, 2023, 14 (03)
  • [46] Deep learning-based segmentation of multisite disease in ovarian cancer
    Buddenkotte, Thomas
    Rundo, Leonardo
    Woitek, Ramona
    Sanchez, Lorena Escudero
    Beer, Lucian
    Crispin-Ortuzar, Mireia
    Etmann, Christian
    Mukherjee, Subhadip
    Bura, Vlad
    McCague, Cathal
    Sahin, Hilal
    Pintican, Roxana
    Zerunian, Marta
    Allajbeu, Iris
    Singh, Naveena
    Sahdev, Anju
    Havrilesky, Laura
    Cohn, David E.
    Bateman, Nicholas W.
    Conrads, Thomas P.
    Darcy, Kathleen M.
    Maxwell, G. Larry
    Freymann, John B.
    Oktem, Ozan
    Brenton, James D.
    Sala, Evis
    Schonlieb, Carola-Bibiane
    [J]. EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [47] A Review of Deep Learning-Based Semantic Segmentation for Point Cloud
    Zhang, Jiaying
    Zhao, Xiaoli
    Chen, Zheng
    Lu, Zhejun
    [J]. IEEE ACCESS, 2019, 7 : 179118 - 179133
  • [48] A deep learning-based cascade algorithm for pancreatic tumor segmentation
    Qiu, Dandan
    Ju, Jianguo
    Ren, Shumin
    Zhang, Tongtong
    Tu, Huijuan
    Tan, Xin
    Xie, Fei
    [J]. FRONTIERS IN ONCOLOGY, 2024, 14
  • [49] Deep learning-based uncertainty quantification of groundwater level predictions
    Nourani, Vahid
    Khodkar, Kasra
    Paknezhad, Nardin Jabbarian
    Laux, Patrick
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (10) : 3081 - 3107
  • [50] Application of Active Learning-based on Uncertainty Quantification to Breast Segmentation in MRI
    Geissler, Kai
    Wenzel, Markus
    Diekmann, Susanne
    von Busch, Heinrich
    Grimm, Robert
    Meine, Hans
    [J]. BILDVERARBEITUNG FUR DIE MEDIZIN 2024, 2024, : 178 - 183