Numerical computation of pyramidal quantum dots with band non-parabolicity

被引:13
|
作者
Gong Liang [1 ]
Shu Yong-chun [1 ]
Xu Jing-jun [1 ]
Wang Zhan-guo [2 ]
机构
[1] Nankai Univ, Minist Educ, Key Lab Adv Tech & Fabricat Weak Light Nonlinear, Tianjin 300457, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
关键词
Polynomial matrix; Eigen-energy scanning method; Band non-parabolicity; Finite difference method; Coupling effect; ENERGY LEVELS; SIMULATION;
D O I
10.1016/j.spmi.2013.06.011
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This paper presents an effective and feasible eigen-energy scanning method to solve polynomial matrix eigenvalues introduced by 3D quantum dots problem with band non-parabolicity. The pyramid-shaped quantum dot is placed in a computational box with uniform mesh in Cartesian coordinates. Its corresponding Schrodinger equation is discretized by the finite difference method. The interface conditions are incorporated into the discretization scheme without explicitly enforcing them. By comparing the eigenvalues from isolated quantum dots and a vertically aligned regular array of them, we investigate the coupling effect for variable distances between the quantum dots and different size. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [21] Influences of conduction band non-parabolicity on intersubband absorption and photon drag in a single quantum well
    Department of Physics, Univ. Manchester, Inst. Sci. T., England, United Kingdom
    Phys B Condens Matter, 1-2 (88-94):
  • [22] Simultaneous Effects of Hydrostatic Pressure and Conduction Band Non-parabolicity on Binding Energies and Diamagnetic Susceptibility of a Hydrogenic Impurity in Spherical Quantum Dots
    Rezaei, G.
    Doostimotlagh, N. A.
    Vaseghi, B.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (02) : 377 - 381
  • [23] THE EFFECT OF CONDUCTION-BAND NON-PARABOLICITY ON INTER-SUB-BAND ABSORPTION IN DOPED QUANTUM WELLS
    NEWSON, DJ
    KUROBE, A
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1988, 3 (08) : 786 - 790
  • [24] EXPERIMENTAL-STUDY OF LIGHT HOLE BAND NON-PARABOLICITY IN GERMANIUM
    ZVEREV, VN
    FIZIKA TVERDOGO TELA, 1980, 22 (11): : 3282 - 3287
  • [25] Hydrostatic pressure and conduction band non-parabolicity effects on the impurity binding energy in a spherical quantum dot
    Sivakami, A.
    Mahendran, M.
    PHYSICA B-CONDENSED MATTER, 2010, 405 (05) : 1403 - 1407
  • [26] ON DETERMINATION OF NON-PARABOLICITY OF ENERGY BANDS
    ZUKOTYNS.S
    KOLODZIE.J
    PHYSICA STATUS SOLIDI, 1967, 19 (01): : K51 - &
  • [27] Non-parabolicity and band gap re-normalisation in Si doped ZnO
    Treharne, R. E.
    Phillips, L. J.
    Durose, K.
    Weerakkody, A.
    Mitrovic, I. Z.
    Hall, S.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (06)
  • [28] Polaron and conduction band non-parabolicity effects on the binding energy, diamagnetic susceptibility and polarizability of an impurity in quantum rings
    El-Bakkari, K.
    Sali, A.
    Iqraoun, E.
    Ezzarfi, A.
    SUPERLATTICES AND MICROSTRUCTURES, 2020, 148
  • [29] THE NON-PARABOLICITY OF INFINITE VOLUME ENDS
    Cavalcante, M. P.
    Mirandola, H.
    Vitorio, F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (03) : 1221 - 1228
  • [30] Carrier Dynamics in Quantum Ring in a Quantum Well: Magnetic Field and Non-Parabolicity Effects
    Angel, S. Lilly
    Sherly, I. Janet
    Nithiananthi, P.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265