Ground state of Kirchhoff type fractional Schrodinger equations with critical growth

被引:45
|
作者
Zhang, Jian [1 ]
Lou, Zhenluo [2 ]
Ji, Yanju [1 ]
Shao, Wei [3 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
[3] QuFu Normal Univ, Sch Management, Rizhao 276826, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger equation; Kirchhoff type; Critical growth; Variational method; SCALAR FIELD-EQUATIONS; ELLIPTIC EQUATION; EXISTENCE;
D O I
10.1016/j.jmaa.2018.01.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the critical Kirchhoff type fractional Schrodinger equation: (1+alpha integral(3)(R)integral(3)(R) |u(x) - u(y)|(2)/|x-y|(3-2s) dxdy) (-Delta)(s)u + u = beta f(u) + u(2*)s 1 in R-3, (0.1) where s is an element of (0, 1) and 2(S)(*) = 6/3-2s. We establish the Pohozaev type identity of (0.1). When s is an element of[3/4, 1), under some conditions on alpha, beta and f (u), we obtain some results on the existence of ground state solutions. When s is an element of (0, 3/4], we also prove the non-existence result. In particular, when alpha = 0, we obtain an existence result. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:57 / 83
页数:27
相关论文
共 50 条