Free-standing nitrogen-doped graphene-carbon nanofiber composite mats: electrospinning synthesis and application as anode material for lithium-ion batteries

被引:17
|
作者
Shan, Changsheng [1 ,2 ]
Wang, Yong [3 ]
Xie, Shuya [4 ]
Guan, Hong-Yu [1 ,4 ]
Argueta, Monica [5 ]
Yue, Yanfeng [5 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Ctr Adv Analyt Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Hubei Univ, Coll Chem & Chem Engn, Minist Of Educ, Key Lab Synth & Applicat Organ Funct Mol, Wuhan, Hubei, Peoples R China
[3] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[4] Northeast Normal Univ, Dept Chem, Changchun, Jilin, Peoples R China
[5] Sul Ross State Univ, Dept Biol Geol & Phys Sci, Alpine, TX 79832 USA
基金
中国国家自然科学基金;
关键词
graphene; carbon nanofiber; electrospinning; lithium-ion battery; ENERGY-CONVERSION; FRAMEWORKS; STORAGE; SHEETS; METAL;
D O I
10.1002/jctb.6114
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BACKGROUND Graphene and carbon nanofibers have shown outstanding advantages as anode materials in lithium-ion batteries (LIBs) because of their prominent electronic conductivity, outstanding flexibility, high theoretical specific capacity, high specific surface, and chemical durability. Free-standing nanocomposite mats from graphene and carbon nanofibers, without any conductive additive and binder, could improve the weight energy density of the LIBs. RESULTS Nitrogen-doped carbon fiber-reduced graphene oxide (NCNFs-rGO) mats are fabricated by high-temperature thermal treatment of graphene oxide/polyacrylonitrile (PAN-GO) nanofiber composite mats via a simple electrospinning method. The resultant free-standing NCNFs-rGO mats which were systematically characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and electrochemical properties as an anode for LIBs were also measured. Without any conductive additive and binder, the resultant free-standing NCNFs-rGO mats were directly used as an anode material in LIBs. CONCLUSION The LIBs with NCNFs-rGO mats as anodes exhibited a high rate capability and long cycle stability owing to the structural integrity and highly electrical conductivity. (c) 2019 Society of Chemical Industry
引用
收藏
页码:3793 / 3799
页数:7
相关论文
共 50 条
  • [21] Nitrogen-doped carbon coated anatase TiO2 anode material for lithium-ion batteries
    Tan, Lei
    Cao, Chengying
    Yang, Huijun
    Wang, Baofeng
    Li, Lei
    MATERIALS LETTERS, 2013, 109 : 195 - 198
  • [22] Nitrogen-doped porous carbon derived from foam polystyrene as an anode material for lithium-ion batteries
    Huang, Jintao
    Lin, Yemao
    Ji, Muwei
    Cong, Guangtao
    Liu, Huichao
    Yu, Jiali
    Yang, Bo
    Li, Cuihua
    Zhu, Caizhen
    Xu, Jian
    APPLIED SURFACE SCIENCE, 2020, 504
  • [23] Nitrogen-doped Carbon Coated Porous Silicon as High Performance Anode Material for Lithium-Ion Batteries
    Jeong, Min-Gi
    Islam, Mobinul
    Du, Hoang Long
    Lee, Yoon-Sung
    Sun, Ho-Hyun
    Choi, Wonchang
    Lee, Joong Kee
    Chung, Kyung Yoon
    Jung, Hun-Gi
    ELECTROCHIMICA ACTA, 2016, 209 : 299 - 307
  • [24] Nitrogen-doped graphene oxide/cupric oxide as an anode material for lithium ion batteries
    Pan, Yue
    Ye, Ke
    Cao, Dianxue
    Li, Yiju
    Dong, Yuanyuan
    Niu, Tengteng
    Zeng, Weijia
    Wang, Guiling
    RSC ADVANCES, 2014, 4 (110) : 64756 - 64762
  • [25] Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries
    Gao, Yang
    Qiu, Xiaotao
    Wang, Xiuli
    Chen, Xianchun
    Gu, Aiqun
    Yu, Zili
    NANOTECHNOLOGY, 2020, 31 (15)
  • [26] A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries
    Wang, Jun
    Wang, Jia-Zhao
    Sun, Zi-Qi
    Gao, Xuan-Wen
    Zhong, Chao
    Chou, Shu-Lei
    Liu, Hua-Kun
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (13) : 4613 - 4618
  • [27] Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries
    Zhang, Meng
    Li, Jin
    Sun, Chunwen
    Wang, Zhenqiu
    Li, Yan
    Zhang, Dianping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 932
  • [28] Flexible free-standing graphene-silicon composite film for lithium-ion batteries
    Wang, Jia-Zhao
    Zhong, Chao
    Chou, Shu-Lei
    Liu, Hua-Kun
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (11) : 1467 - 1470
  • [29] Nitrogen-doped graphene oxide coated ZnO nanohybrid for lithium-ion batteries anode
    Deng, Shenzhen
    Li, Zhongtao
    INTEGRATED FERROELECTRICS, 2017, 182 (01) : 10 - 20
  • [30] SnO2-graphene nanocomposite free-standing film as anode in lithium-ion batteries
    Eunmi Choi
    Daeun Kim
    Ilbok Lee
    Su Jin Chae
    Areum Kim
    Sung Gyu Pyo
    Songhun Yoon
    Electronic Materials Letters, 2015, 11 : 836 - 840