Raman and mid-IR spectroscopic study of the magnesium carbonate minerals - brugnatellite and coalingite

被引:26
|
作者
Frost, Ray L. [1 ]
Bahfenne, Silmarilly [1 ]
机构
[1] Queensland Univ Technol, Sch Phys & Chem Sci, Inorgan Mat Res Program, Brisbane, Qld 4001, Australia
基金
澳大利亚研究理事会;
关键词
sequestration of greenhouse gases; magnesium carbonate; (CO3)(2-); brugnatellite; coalingite; artinite; dypingite; Raman spectroscopy; PYROAURITE; HYDROTALCITE; SJOGRENITE; SPECTRA; ROCKS;
D O I
10.1002/jrs.2110
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Two hydrated hydroxy magnesium carbonate minerals brugnatellite and coalingite with a hydrotalcite-like structure were studied by Raman spectroscopy. Intense bands are observed at 1094 cm(-1) for brugnatellite and at 1093 cm(-1) for coalingite attributed to the CO32- v(1) symmetric stretching mode. Additional low intensity bands are observed at 1064 cm(-1). The existence of two symmetric stretching modes is accounted for in terms of different anion structural arrangements. Very low intensity bands at 1377 and 1451 cm(-1) are observed for brugnatellite, and the Raman spectrum of coalingite displays two bands at 1420 and 1465 cm(-1) attributed to the (CO3)(2-) v(3) antisymmetric stretching modes. Very low intensity bands at 792 cm(-1) for brugnatellite and 797 cm(-1) for coalingite are assigned to the CO32- out-of-plane bend (v(2)). X-ray diffraction studies by other researchers have shown that these minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality and explains why the Raman spectra of these minerals have not been previously or sufficiently described. A comparison is made with the Raman spectra of other hydrated magnesium carbonate minerals. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:360 / 365
页数:6
相关论文
共 50 条
  • [21] Design of a Low-threshold Mid-IR Silicon Raman Laser
    Behzadi, Behsan
    Jain, Ravinder K.
    Hossein-Zadeh, Mani
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [23] Mid-IR hollow-core silica fibre Raman lasers
    Gladyshev, A. V.
    Kosolapov, A. F.
    Kolyadin, A. N.
    Astapovich, M. S.
    Pryamikov, A. D.
    Likhachev, M. E.
    Bufetov, I. A.
    QUANTUM ELECTRONICS, 2017, 47 (12) : 1078 - 1082
  • [24] A Raman spectroscopic study of humite minerals
    Frost, Ray L.
    Palmer, Sara J.
    Bouzaid, Jocelyn M.
    Reddy, B. Jagannadha
    JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (01) : 68 - 77
  • [25] Carbonate determination in soils by mid-IR spectroscopy with regional and continental scale models
    Comstock, Jonathan P.
    Sherpa, Sonam R.
    Ferguson, Richard
    Bailey, Scarlett
    Beem-Miller, Jeffrey P.
    Lin, Feng
    Lehmann, Johannes
    Wolfe, David W.
    PLOS ONE, 2019, 14 (02):
  • [26] Comparison of near-IR, Raman, and mid-IR spectroscopies for the determination of BTEX in petroleum fuels
    Old Dominion Univ, Norfolk, United States
    Appl Spectrosc, 11 (1613-1620):
  • [27] Comparison of near-IR, Raman, and mid-IR spectroscopies for the determination of BTEX in petroleum fuels
    Cooper, JB
    Wise, KL
    Welch, WT
    Sumner, MB
    Wilt, BK
    Bledsoe, RR
    APPLIED SPECTROSCOPY, 1997, 51 (11) : 1613 - 1620
  • [28] All-in-one bioprocess monitoring with a mid-ir spectroscopic sensor.
    Rhiel, M
    Cannizzaro, C
    Marison, I
    von Stockar, U
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U228 - U228
  • [29] Neuron Absorption Study and Mid-IR Optical Excitations
    Guo, Dingkai
    Chen, Xing
    Vadala, Shilpa
    Leach, Jennie
    Kostov, Yordan
    Bewley, William W.
    Kim, Chul-Soo
    Kim, Mijin
    Canedy, Chadwick L.
    Merritt, Charles D.
    Vurgaftman, Igor
    Meyer, Jerry R.
    Choa, Fow-Sen
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS VIII, PTS 1 AND 2, 2012, 8207
  • [30] A mid-IR study of the circumstellar environment of Herbig Be stars
    Verhoeff, A. P.
    Waters, L. B. F. M.
    van den Ancker, M. E.
    Min, M.
    Stap, F. A.
    Pantin, E.
    van Boekel, R.
    Acke, B.
    Tielens, A. G. G. M.
    de Koter, A.
    ASTRONOMY & ASTROPHYSICS, 2012, 538