VC-Dimension Based Generalization Bounds for Relational Learning

被引:0
|
作者
Kuzelka, Ondrej [1 ]
Wang, Yuyi [2 ]
Schockaert, Steven [3 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Leuven, Belgium
[2] Swiss Fed Inst Technol, DISCO Grp, Zurich, Switzerland
[3] Cardiff Univ, Sch Comp Sci & Informat, Cardiff, Wales
关键词
D O I
10.1007/978-3-030-10928-8_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many applications of relational learning, the available data can be seen as a sample from a larger relational structure (e.g. we may be given a small fragment from some social network). In this paper we are particularly concerned with scenarios in which we can assume that (i) the domain elements appearing in the given sample have been uniformly sampled without replacement from the (unknown) full domain and (ii) the sample is complete for these domain elements (i.e. it is the full substructure induced by these elements). Within this setting, we study bounds on the error of sufficient statistics of relational models that are estimated on the available data. As our main result, we prove a bound based on a variant of the Vapnik-Chervonenkis dimension which is suitable for relational data.
引用
收藏
页码:259 / 275
页数:17
相关论文
共 50 条
  • [31] Sperner families of bounded VC-dimension
    Anstee, RP
    Sali, A
    [J]. DISCRETE MATHEMATICS, 1997, 175 (1-3) : 13 - 21
  • [32] The VC-dimension of subclasses of pattern languages
    Mitchell, A
    Scheffer, T
    Sharma, A
    Stephan, F
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 1999, 1720 : 93 - 105
  • [33] Robust subgaussian estimation with VC-dimension
    Depersin, Jules
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 971 - 989
  • [34] Approximate subgroups with bounded VC-dimension
    Conant, Gabriel
    Pillay, Anand
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1001 - 1043
  • [35] ON THE NUMBER OF CYCLES OF GRAPHS AND VC-DIMENSION
    Mofidi, Alireza
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (01): : 121 - 135
  • [36] Elementary classes of finite VC-dimension
    Zambella, Domenico
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2015, 54 (5-6) : 511 - 520
  • [37] Parallelograms and the VC-dimension of the distance sets
    Pham, Thang
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 349 : 195 - 200
  • [38] NEURAL NETS WITH SUPERLINEAR VC-DIMENSION
    MAASS, W
    [J]. NEURAL COMPUTATION, 1994, 6 (05) : 877 - 884
  • [39] DISCREPANCY AND APPROXIMATIONS FOR BOUNDED VC-DIMENSION
    MATOUSEK, J
    WELZL, E
    WERNISCH, L
    [J]. COMBINATORICA, 1993, 13 (04) : 455 - 466
  • [40] VC-DIMENSION AND DISTANCE CHAINS IN Fdq
    Ascoli, Ruben
    Betti, Livia
    Cheigh, Justin
    Iosevich, Alex
    Jeong, Ryan
    Liu, Xuyan
    McDonald, Brian
    Milgrim, Wyatt
    Miller, Steven j.
    Acosta, Francisco romero
    Iannuzzelli, Santiago velazquez
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2024, 32 (01): : 43 - 57