TSP optimisation using multi tour ants

被引:0
|
作者
Hendtlass, T [1 ]
机构
[1] Swinburne Univ Technol, Sch Informat Technol, Ctr Intelligent Syst & Complex Proc, Hawthorn, Vic 3122, Australia
关键词
ant colony optimisation; travelling salesperson problem; heuristic search;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ant colony optimisation has proved useful for solving problems that can be cast in a path length minimisation form, particularly the travelling sales person (TSP) problem. Finding good, if not optimal, solutions in a reasonable time requires a balance to be struck between exploring new solutions and exploiting known information about possible solutions already examined. A new algorithm in which individual ants each live long enough to explore multiple solutions is introduced. Results are presented that show that enabling ants to learn from their own prior experience in addition to the collective wisdom of the colony improves performance on two standard test TSP data sets and suggests that the algorithm may well be useful for the whole class of TSP problems.
引用
收藏
页码:523 / 532
页数:10
相关论文
共 50 条
  • [1] TSP in Spreadsheets - a Guided Tour
    Rasmussen, Rasmus
    [J]. INTERNATIONAL REVIEW OF ECONOMICS EDUCATION, 2011, 10 (01) : 94 - 116
  • [2] Optimal TSP tour length estimation using Sammon maps
    Shuhan Kou
    Bruce Golden
    Stefan Poikonen
    [J]. Optimization Letters, 2023, 17 : 89 - 105
  • [3] Optimal TSP tour length estimation using Sammon maps
    Kou, Shuhan
    Golden, Bruce
    Poikonen, Stefan
    [J]. OPTIMIZATION LETTERS, 2023, 17 (01) : 89 - 105
  • [4] Solving geometric TSP with ants
    Bui, Thang N.
    Colpan, Mufit
    [J]. GECCO 2005: Genetic and Evolutionary Computation Conference, Vols 1 and 2, 2005, : 271 - 272
  • [5] Optimal TSP tour length estimation using standard deviation as a predictor
    Kou, Shuhan
    Golden, Bruce
    Poikonen, Stefan
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2022, 148
  • [6] The Method of Production Scheduling with Uncertainties Using the Ants Colony Optimisation
    Paprocka, Iwona
    Krenczyk, Damian
    Burduk, Anna
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 14
  • [7] Dynamic ant colony optimisation for TSP
    Li, Y
    Gong, SH
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2003, 22 (7-8): : 528 - 533
  • [8] Dynamic ant colony optimisation for TSP
    Yong Li
    Shihua Gong
    [J]. The International Journal of Advanced Manufacturing Technology, 2003, 22 : 528 - 533
  • [9] Optimisation using Natural Language Processing: Personalized Tour Recommendation for Museums
    Mathias, Mayeul
    Moussa, Assema
    Zhou, Fen
    Torres-Moreno, Juan-Manuel
    Poli, Marie-Sylvie
    Josselin, Didier
    El-Beze, Marc
    Linhares, Andrea Carneiro
    Rigat, Francoise
    [J]. FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2014, 2014, 2 : 439 - 446
  • [10] Improving the Performance of MAX-MIN Ant System on the TSP Using Stubborn Ants
    Abdelbar, Ashraf M.
    Wunsch, Donald C., II
    [J]. PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12), 2012, : 1395 - 1396