Improving the Performance of MAX-MIN Ant System on the TSP Using Stubborn Ants

被引:0
|
作者
Abdelbar, Ashraf M. [1 ]
Wunsch, Donald C., II [2 ]
机构
[1] Amer Univ Cairo, Dept Comp Sci & Engn, Cairo, Egypt
[2] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO USA
基金
美国国家科学基金会;
关键词
Ant colony optimization; traveling salesman problem;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In ant colony optimization (ACO) methods, including Ant System and MAX-MIN[Ant System, each ant stochastically generates its candidate solution, in a given iteration, based on the same pheromone tau and heuristic eta information as every other ant. Stubborn ants is an ACO variation in which if an ant generates a particular candidate solution in a given iteration, then the components of that solution will have a higher probability of being selected in the candidate solution generated by that ant in the next iteration. We evaluate this variation in the context of MAX-MIN Ant System using 41 instances of the Traveling Salesman Problem (TSP), and find that it improves solution quality to a statistically-significant extent.
引用
收藏
页码:1395 / 1396
页数:2
相关论文
共 50 条
  • [1] A technique for improving the Max-Min Ant System algorithm
    See, Phen Chiak
    Wong, Kuan Yew
    Komarudin
    [J]. 2008 INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING, VOLS 1-3, 2008, : 863 - 866
  • [2] MAX-MIN Ant System
    Stützle, T
    Hoos, HH
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2000, 16 (08): : 889 - 914
  • [3] A Weighted Max-Min Ant Colony Algorithm for TSP Instances
    Bu, Yun
    Li, Tian Qian
    Zhang, Qiang
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (03): : 894 - 897
  • [4] Parallel Max-Min Ant System Using MapReduce
    Tan, Qing
    He, Qing
    Shi, Zhongzhi
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 182 - 189
  • [5] A max-min ant system algorithm with εMAX selection
    Ogawa, Masato
    Li, Lei
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (04): : 467 - 471
  • [6] On MAX-MIN ant system's parameters
    Pellegrini, Paola
    Favaretto, Daniela
    Moretti, Elena
    [J]. ANT COLONY OPTIMIZATION AND SWARM INTELLIGENCE, PROCEEDINGS, 2006, 4150 : 203 - 214
  • [7] MAX-MIN Ant System in Image Preprocessing
    Laptik, R.
    Navakauskas, D.
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2009, (01) : 21 - 24
  • [8] On the Explorative Behavior of MAX-MIN Ant System
    Favaretto, Daniela
    Moretti, Elena
    Pellegrini, Paola
    [J]. ENGINEERING STOCHASTIC LOCAL SEARCH ALGORITHMS: DESIGNING, IMPLEMENTING AND ANALYZING EFFECTIVE HEURISTICS, 2009, 5752 : 115 - 119
  • [9] Reactive max-min ant system with recursive local search and its application to TSP and QAP
    Sagban, Rafid
    Ku-Mahamud, Ku Ruhana
    Abu Bakar, Muhamad Shahbani
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2017, 23 (01): : 127 - 134
  • [10] IMPROVING HARD DISK DRIVE PRODUCTIVITY VIA MAX-MIN ANT SYSTEM
    Saeheaw, Teerapun
    Charoenchai, Nivit
    [J]. PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON MECHANICAL, INDUSTRIAL, AND MANUFACTURING TECHNOLOGIES (MIMT 2010), 2010, : 437 - 442