EXISTENCE RESULTS FOR A CLASS OF NON-UNIFORMLY ELLIPTIC EQUATIONS OF p-LAPLACIAN TYPE

被引:2
|
作者
Quoc-Anh Ngo [1 ,2 ]
机构
[1] Vietnam Natl Univ, Dept Math, Coll Sci, Hanoi, Vietnam
[2] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
关键词
p-Laplacian; non-uniform; elliptic; divergence form; minimum principle;
D O I
10.1142/S0219530509001323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of non-trivial weak solutions in W-0(1,p) (Omega) 1 < p < infinity, to a class of non-uniformly elliptic equations of the form -div(a(x, del u)) = lambda f(u) + mu g(u) in a bounded domain Omega of R-N. Here a satisfies vertical bar a(x, xi)vertical bar <= c(0)(h(0)(x)) + h(1)(x)vertical bar xi vertical bar(p-1)) for all xi is an element of R-N, a.e. x is an element of Omega, h(0) is an element of Lp/p-1(Omega), h(1) is an element of L-loc(1)(Omega), h(0)(x) >= 0, h(1)(x) >= 1 for a.e. x in Omega.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 50 条