Coupling of SPH and Voronoi-cell lattice models for simulating fluid-structure interaction

被引:9
|
作者
Hwang, Young Kwang [1 ]
Bolander, John E. [2 ]
Lim, Yun Mook [3 ]
Hong, Jung-Wuk [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Univ Calif Davis, Dept Civil & Environm Engn, One Shields Ave, Davis, CA 95616 USA
[3] Yonsei Univ, Dept Civil & Environm Engn, 50 Yonsei Ro, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Fluid– structure interaction; Smoothed particle hydrodynamics; Voronoi-cell lattice model; Rigid-body spring network; Free-surface flow; Large deformation; SMOOTHED PARTICLE HYDRODYNAMICS; FREE-SURFACE FLOW; NUMERICAL-SIMULATION; CONCRETE; FAILURE;
D O I
10.1007/s40571-020-00371-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, a new methodology for coupling smoothed particle hydrodynamics (SPH) and the Voronoi-cell lattice model (VCLM) is proposed for simulating fluid-structure interaction (FSI). Free-surface flow of the fluid is modeled using SPH; the structural components are modeled by the VCLM, which accounts for both geometric and material nonlinear behaviors. The FSI algorithm is effective regardless of the mesh irregularity, which is validated through numerical simulations of the elastic opening of a dam gate. The simulation results are compared with other numerical and experimental results, which demonstrate the capabilities of the proposed method for FSI problems.
引用
收藏
页码:813 / 823
页数:11
相关论文
共 50 条
  • [41] Partitioned strong coupling algorithms for fluid-structure interaction
    Matthies, HG
    Steindorf, J
    COMPUTERS & STRUCTURES, 2003, 81 (8-11) : 805 - 812
  • [42] ACCELERATION OF FLUID-STRUCTURE INTERACTION PROCEDURES BY ANTICIPATORY COUPLING
    Seubers, J. H.
    Veldman, A. E. P.
    COUPLED PROBLEMS IN SCIENCE AND ENGINEERING VII (COUPLED PROBLEMS 2017), 2017, : 558 - 569
  • [43] Simulation of cavitating fluid-Structure interaction using SPH-FE method
    Kalateh, Farhoud
    Koosheh, Ali
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 173 : 51 - 70
  • [44] An integrative SPH method for heat transfer problems involving fluid-structure interaction
    Tang, Xiaojing
    Zhang, Chi
    Haidn, Oskar
    Hu, Xiangyu
    ACTA MECHANICA SINICA, 2023, 39 (02)
  • [45] Modeling accidental-type fluid-structure interaction problems with the SPH method
    Potapov, S.
    Maurel, B.
    Combescure, A.
    Fabis, J.
    COMPUTERS & STRUCTURES, 2009, 87 (11-12) : 721 - 734
  • [46] Violent Fluid-Structure Interaction simulations using a coupled SPH/FEM method
    Fourey, G.
    Oger, G.
    Le Touze, D.
    Alessandrini, B.
    9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS, 2010, 10
  • [47] A hydroelastic fluid-structure interaction solver based on the Riemann-SPH method
    Meng, Zi-Fei
    Zhang, A-Man
    Yan, Jia-Le
    Wang, Ping-Ping
    Khayyer, Abbas
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [48] PRESENTING A MODIFIED SPH ALGORITHM FOR NUMERICAL STUDIES OF FLUID-STRUCTURE INTERACTION PROBLEMS
    Hosseini, S. M.
    Amanifard, N.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2007, 20 (02): : 167 - 178
  • [49] A coupled SPH-SPIM solver for fluid-structure interaction with nonlinear deformation
    Yang, Xi
    Liang, Guangqi
    Zhang, Guiyong
    Zhang, Zhifan
    Sun, Zhe
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 427
  • [50] Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility
    Burman, Erik
    Fernandez, Miguel A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (5-8) : 766 - 784