Comments on "Ewald summation technique for one-dimensional charge distributions"

被引:1
|
作者
Harris, FE [1 ]
机构
[1] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA
[2] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0010-4655(02)00452-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The article entitled "Ewald summation technique for one-dimensional charge distributions" by Langridge, Hart, and Crampin (Comput. Phys. Commun. 134 (2001) 78) introduces a technique for accelerating convergence of the lattice sums describing long-range electrostatic interactions in these systems. Unfortunately, because the work does not include connections to earlier relevant contributions, it does not address known computational problems associated with the proposed technique. These problems are reviewed and satisfactory methods for overcoming them are identified. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:271 / 273
页数:3
相关论文
共 50 条
  • [41] Charge transport through one-dimensional Moire crystals
    Bonnet, Romeo
    Lherbier, Aurelien
    Barraud, Clement
    Della Rocca, Maria Luisa
    Lafarge, Philippe
    Charlier, Jean-Christophe
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [42] One-Dimensional Quasicrystals from Incommensurate Charge Order
    Flicker, Felix
    van Wezel, Jasper
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (23)
  • [43] Charge-order fluctuations in one-dimensional silicides
    Changgan Zeng
    P. R. C. Kent
    Tae-Hwan Kim
    An-Ping Li
    Hanno H. Weitering
    [J]. Nature Materials, 2008, 7 : 539 - 542
  • [44] Transport properties of graphene with one-dimensional charge defects
    Ferreira, Aires
    Xu, Xiangfan
    Tan, Chang-Lin
    Bae, Su-Kang
    Peres, N. M. R.
    Hong, Byung-Hee
    Oezyilmaz, Barbaros
    Castro Neto, A. H.
    [J]. EPL, 2011, 94 (02)
  • [45] Charge-order fluctuations in one-dimensional silicides
    Zeng, Changgan
    Kent, P. R. C.
    Kim, Tae-Hwan
    Li, An-Ping
    Weitering, Hanno H.
    [J]. NATURE MATERIALS, 2008, 7 (07) : 539 - 542
  • [46] CHARGE SUSCEPTIBILITY OF THE ONE-DIMENSIONAL HUBBARD-MODEL
    USUKI, T
    KAWAKAMI, N
    OKIJI, A
    [J]. PHYSICS LETTERS A, 1989, 135 (8-9) : 476 - 480
  • [47] Charge and energy fractionalization mechanism in one-dimensional channels
    Acciai, Matteo
    Calzona, Alessio
    Dolcetto, Giacomo
    Schmidt, Thomas L.
    Sassetti, Maura
    [J]. PHYSICAL REVIEW B, 2017, 96 (07)
  • [48] Collective dynamics of one-dimensional charge density waves
    Glatz, A
    Kumar, S
    Li, MS
    [J]. PHYSICAL REVIEW B, 2001, 64 (18)
  • [49] One-dimensional adiabatic circuits with inherent charge recycling
    Khorami, A.
    Sharifkhani, M.
    [J]. ELECTRONICS LETTERS, 2015, 51 (14) : 1056 - 1057
  • [50] Charge and spin transport in the one-dimensional Hubbard model
    Gu, Shi-Jian
    Peres, N. M. R.
    Carmelo, J. M. P.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (50)