A texture component crystal plasticity finite element method for scalable large strain anisotropy simulations

被引:7
|
作者
Raabe, D
Helming, K
Roters, F
Zhao, Z
Hirsch, J
机构
[1] Max Planck Inst Eisenforsch GmbH, Abt Mikrostructurphys & Umformtechn, DE-40237 Dusseldorf, Germany
[2] Tech Univ Clausthal, Inst Phys, DE-38678 Clausthal Zellerfeld, Germany
[3] VAW AG, Forsch & Entwicklung, DE-53014 Bonn, Germany
来源
关键词
aluminium; anisotropy; crystal plasticity; finite element simulation; metal forming; micromechanics; polycrystal; single crystal; slip systems; texture; texture change; yield surfaces;
D O I
10.4028/www.scientific.net/MSF.408-412.257
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a crystal plasticity finite element method which includes and updates the texture of polycrystalline matter for physically based simulations of large strain forming operations. The approach works by directly mapping a set of discrete texture components into a crystal plasticity finite element method. The method is well suited for industrial applications since it is formulated on the basis of existing commercial software solutions. The study gives an overview of the new texture component crystal plasticity finite element method and presents examples.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [21] On large-strain finite element solutions of higher-order gradient crystal plasticity
    Kuroda, Mitsutoshi
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (24) : 3382 - 3394
  • [22] Quantitative analysis of upset texture by crystal plasticity: finite element analysis
    Lee, M. G.
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2008, 33 (04): : 361 - 375
  • [23] Crystal plasticity finite element modelling of the extrusion texture of a magnesium alloy
    Shao, Yichuan
    Tang, Tao
    Li, Dayong
    Tang, Weiqin
    Peng, Yinghong
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2015, 23 (05)
  • [24] A method of coupling discrete dislocation plasticity to the crystal plasticity finite element method
    Xu, Y.
    Balint, D. S.
    Dini, D.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (04)
  • [25] Crystal plasticity finite element simulations for plastic anisotropy in single layer and oligo-crystal copper under foil rolling
    Chen S.-D.
    Lu R.-H.
    Sun J.
    Li J.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2021, 31 (02): : 353 - 364
  • [26] INTERNAL HEAT SOURCES IN LARGE STRAIN THERMO-ELASTO-PLASTICITY - THEORY AND FINITE ELEMENT SIMULATIONS
    Wcislo, Balbina
    Mucha, Marzena
    Pamin, Jerzy
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2024, 62 (02) : 293 - 306
  • [27] Prediction of texture evolution under varying deformation states through crystal plasticity finite element method
    Li Hong-wei
    Yang He
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2012, 22 : S222 - S231
  • [28] Simulation of texture evolution and macroscopic properties in Mg alloys using the crystal plasticity finite element method
    Choi, S. -H.
    Kim, D. H.
    Lee, H. W.
    Shin, E. J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (4-5): : 1151 - 1159
  • [29] Simulation of texture evolution and macroscopic properties in Mg alloys using the crystal plasticity finite element method
    Choi, S.-H.
    Kim, D.H.
    Lee, H.W.
    Shin, E.J.
    Materials Science and Engineering: A, 2010, 527 (4-5) : 1151 - 1159
  • [30] A quantitative evaluation of the deformation texture predictions for aluminium alloys from crystal plasticity finite element method
    Li, SY
    Van Houtte, P
    Kalidindi, SR
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2004, 12 (05) : 845 - 870