Interatomic potential that describes martensitic phase transformations in pure lithium

被引:11
|
作者
Ko, Won-Seok [1 ]
Jeon, Jong Bae [2 ]
机构
[1] Univ Ulsan, Sch Mat Sci & Engn, Ulsan 44610, South Korea
[2] Korea Inst Ind Technol KITECH, Funct Components & Mat R&D Grp, Busan 618230, South Korea
关键词
Martensitic phase transformation; Lithium; Modified embedded-atom method; Molecular dynamics simulation; EMBEDDED-ATOM-METHOD; MOLECULAR-DYNAMICS SIMULATION; TOTAL-ENERGY CALCULATIONS; LOW-TEMPERATURE PHASE; ELASTIC BAND METHOD; WAVE BASIS-SET; AL-LI ALLOYS; LIQUID LITHIUM; NEUTRON-SCATTERING; CRYSTAL-STRUCTURE;
D O I
10.1016/j.commatsci.2016.12.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An interatomic potential for the pure lithium system is developed on the basis of the second nearest neighbor modified embedded-atom method formalism, utilizing the force-matching method with a DFT database of various atomic configurations. The developed potential accurately reproduces fundamental physical properties including an unusual order of surface energies of the bcc lithium, (100) < (110) <(111). Subsequent molecular dynamics simulations verify that the present potential can be successfully applied to study martensitic phase transformations of pure lithium at low temperatures. The present results provide detailed insights into the formation of a disordered polytype structure consisting of short-ranged fcc- and hcp-type stacking sequences supporting the experimental observation of this structure in high-purity lithium. (C) 2016 Elsevier E.V. All rights reserved.
引用
收藏
页码:202 / 210
页数:9
相关论文
共 50 条
  • [31] A combined phase field approach for martensitic transformations and damage
    Regina Schmitt
    Charlotte Kuhn
    Robert Skorupski
    Marek Smaga
    Dietmar Eifler
    Ralf Müller
    Archive of Applied Mechanics, 2015, 85 : 1459 - 1468
  • [32] Martensitic phase transformations of bulk nanocrystalline NiTi alloys
    Waitz, Thomas
    Karnthaler, H. -Peter
    Antretter, Thomas
    Dieter Fischer, Franz
    SOLID-SOLID PHASE TRANSFORMATIONS IN INORGANIC MATERIAL 2005, VOL 2, 2005, : 885 - 898
  • [33] A combined phase field approach for martensitic transformations and damage
    Schmitt, Regina
    Kuhn, Charlotte
    Skorupski, Robert
    Smaga, Marek
    Eifler, Dietmar
    Mueller, Ralf
    ARCHIVE OF APPLIED MECHANICS, 2015, 85 (9-10) : 1459 - 1468
  • [34] Martensitic phase transformations in nanocrystalline NiTi studied by TEM
    Waitz, T
    Kazykhanov, V
    Karnthaler, HP
    ACTA MATERIALIA, 2004, 52 (01) : 137 - 147
  • [35] Crystalline damage growth during martensitic phase transformations
    Suiker, A. S. J.
    Turteltaub, S.
    PHILOSOPHICAL MAGAZINE, 2007, 87 (32) : 5033 - 5063
  • [36] A Brief Review on Discrete Modelling of Martensitic Phase Transformations
    Mahendaran Uchimali
    P. Sittner
    Shape Memory and Superelasticity, 2024, 10 : 2 - 15
  • [37] MARTENSITIC AND DISPLACIVE PHASE-TRANSFORMATIONS IN URANIUM ALLOYS
    VANDERMEER, RA
    JOURNAL OF METALS, 1987, 39 (10): : A53 - A53
  • [38] The effective energy and laminated microstructures in martensitic phase transformations
    Goldsztein, GH
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (04) : 899 - 925
  • [39] Sphere packings as a tool for the description of martensitic phase transformations
    Sowa, Heidrun
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : 39 - 45
  • [40] Diamond-Like Phase Transformations of Martensitic Type
    Greshnyakov, Vladimir A.
    Belenkov, Evgeny A.
    SHAPE MEMORY ALLOYS, SMA 2018, 2018, 9 : 152 - 156