Interatomic potential that describes martensitic phase transformations in pure lithium

被引:11
|
作者
Ko, Won-Seok [1 ]
Jeon, Jong Bae [2 ]
机构
[1] Univ Ulsan, Sch Mat Sci & Engn, Ulsan 44610, South Korea
[2] Korea Inst Ind Technol KITECH, Funct Components & Mat R&D Grp, Busan 618230, South Korea
关键词
Martensitic phase transformation; Lithium; Modified embedded-atom method; Molecular dynamics simulation; EMBEDDED-ATOM-METHOD; MOLECULAR-DYNAMICS SIMULATION; TOTAL-ENERGY CALCULATIONS; LOW-TEMPERATURE PHASE; ELASTIC BAND METHOD; WAVE BASIS-SET; AL-LI ALLOYS; LIQUID LITHIUM; NEUTRON-SCATTERING; CRYSTAL-STRUCTURE;
D O I
10.1016/j.commatsci.2016.12.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An interatomic potential for the pure lithium system is developed on the basis of the second nearest neighbor modified embedded-atom method formalism, utilizing the force-matching method with a DFT database of various atomic configurations. The developed potential accurately reproduces fundamental physical properties including an unusual order of surface energies of the bcc lithium, (100) < (110) <(111). Subsequent molecular dynamics simulations verify that the present potential can be successfully applied to study martensitic phase transformations of pure lithium at low temperatures. The present results provide detailed insights into the formation of a disordered polytype structure consisting of short-ranged fcc- and hcp-type stacking sequences supporting the experimental observation of this structure in high-purity lithium. (C) 2016 Elsevier E.V. All rights reserved.
引用
收藏
页码:202 / 210
页数:9
相关论文
共 50 条
  • [1] Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases
    Hennig, R. G.
    Lenosky, T. J.
    Trinkle, D. R.
    Rudin, S. P.
    Wilkins, J. W.
    PHYSICAL REVIEW B, 2008, 78 (05)
  • [2] Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning
    Zong, Hongxiang
    Pilania, Ghanshyam
    Ding, Xiangdong
    Ackland, Graeme J.
    Lookman, Turab
    NPJ COMPUTATIONAL MATERIALS, 2018, 4
  • [3] Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning
    Hongxiang Zong
    Ghanshyam Pilania
    Xiangdong Ding
    Graeme J. Ackland
    Turab Lookman
    npj Computational Materials, 4
  • [4] Theory of the martensitic phase transformations in lithium and sodium
    Blaschko, O
    Dmitriev, V
    Krexner, G
    Tolédano, P
    PHYSICAL REVIEW B, 1999, 59 (14): : 9095 - 9112
  • [5] Development of an interatomic potential for the simulation of phase transformations in zirconium
    Mendelev, M. I.
    Ackland, G. J.
    PHILOSOPHICAL MAGAZINE LETTERS, 2007, 87 (05) : 349 - 359
  • [6] Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium
    Mendelev, M. I.
    Underwood, T. L.
    Ackland, G. J.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (15):
  • [7] UNIVERSAL INTERATOMIC POTENTIAL FOR PURE METALS
    Zalizniak, V. E.
    Zolotov, O. A.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2012, 3 (01): : 76 - +
  • [8] Martensitic transformations of β-phase in zirconium
    Gandi, Appala Naidu
    Zhu, Jiajie
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (22)
  • [9] Interatomic potential parameters for potassium tetrachlorozincate and their application to modelling its phase transformations
    Ferrari, ES
    Roberts, KJ
    Thomson, GB
    Gale, JD
    Catlow, CRA
    ACTA CRYSTALLOGRAPHICA SECTION A, 2001, 57 : 264 - 271
  • [10] Phase Transformations of Nanocrystalline Martensitic Materials
    T. Waitz
    K. Tsuchiya
    T. Antretter
    F. D. Fischer
    MRS Bulletin, 2009, 34 : 814 - 821