Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

被引:44
|
作者
Sano-Furukawa, A. [1 ,2 ]
Hattori, T. [1 ,2 ]
Arima, H. [3 ]
Yamada, A. [4 ]
Tabata, S. [5 ]
Kondo, M. [5 ]
Nakamura, A. [5 ]
Kagi, H. [6 ]
Yagi, T. [6 ]
机构
[1] Japan Atom Energy Agcy, Quantum Beam Sci Ctr, Ibaraki 3191195, Japan
[2] Japan Atom Energy Agcy, J PARC Ctr, Ibaraki 3191195, Japan
[3] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] Univ Shiga Prefecture, Hikone, Shiga 5228533, Japan
[5] Sumitomo Heavy Ind Co Ltd, Saijo, Ehime 7920001, Japan
[6] Univ Tokyo, Grad Sch Sci, Geochem Res Ctr, Tokyo 1130033, Japan
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2014年 / 85卷 / 11期
关键词
POWDER DIFFRACTION; APPARATUS; CELL;
D O I
10.1063/1.4901095
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm(3). Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] High-Pressure/High-Temperature
    Ziegler, Robert
    JPT, Journal of Petroleum Technology, 2022, 74 (03): : 79 - 80
  • [42] High-Pressure/High-Temperature
    Ziegler, Robert
    JPT, Journal of Petroleum Technology, 2021, 73 (03):
  • [43] Applications of moissanite anvil cell for Raman spectroscopy under high-temperature and high-pressure
    Duan, TY
    Sun, Q
    Zheng, HF
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25 (06) : 902 - 905
  • [44] Ultrasonic measurements of the sound velocities in polycrystalline San Carlos olivine in multi-anvil, high-pressure apparatus
    Darling, KL
    Gwanmesia, GD
    Kung, J
    Li, BS
    Liebermann, RC
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2004, 143 : 19 - 31
  • [45] Realization of parallel experiments in a diamond anvil cell and their application to water-mineral interactions at high-pressure and high-temperature conditions
    Jiang, Runze
    Lan, Chunyuan
    Du, Jinxue
    Tao, Renbiao
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (05):
  • [46] In Situ High-Pressure and High-Temperature Experiments on n-Heptane
    Qiao, Erwei
    Zheng, Haifei
    Long, Changxing
    APPLIED SPECTROSCOPY, 2012, 66 (02) : 233 - 236
  • [47] High pressure and high temperature generation using small-sized cubic-type multi-anvil apparatus
    Saitoh, Hiroyuki
    Abe, Jun
    HIGH PRESSURE RESEARCH, 2011, 31 (03) : 407 - 412
  • [48] Opposed-anvil-type high-pressure and high-temperature apparatus using sintered diamond
    Gotou, H
    Yagi, T
    Frost, DJ
    Rubie, DC
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (03):
  • [49] A six-axis robotic sample changer for high-throughput neutron powder diffraction and texture measurements
    Losko, Adrian S.
    Vogel, Sven C.
    Reiche, H. Matthias
    Nakotte, Heinz
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2014, 47 : 2109 - 2112
  • [50] High-pressure neutron diffraction at the SNS
    Guthrie, Malcolm
    Boehler, Reinhard
    Somayazulu, Maddury
    Strobel, Timothy
    Karotsis, Georgios
    Tulk, Chris
    dos Santos, Antonio M.
    Molaison, Jamie
    Pradhan, Neelam
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C112 - C112