On Entropy Flux of Transversely Isotropic Elastic Bodies

被引:13
|
作者
Liu, I-Shih [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
关键词
Clausius-Duhem inequality; General entropy inequality; Thermodynamics with Lagrange multiplier; Entropy flux relation; Transversely isotropic material; LAGRANGE MULTIPLIERS; REPRESENTATIONS; THERMODYNAMICS;
D O I
10.1007/s10659-009-9200-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently (Liu in J. Elast. 90:259-270, 2008) thermodynamic theory of elastic (and viscoelastic) material bodies has been analyzed based on the general entropy inequality. It is proved that for isotropic elastic materials, the results are identical to the classical results based on the Clausius-Duhem inequality (Coleman and Noll in Arch. Ration. Mech. Anal. 13:167-178, 1963), for which one of the basic assumptions is that the entropy flux is defined as the heat flux divided by the absolute temperature. For anisotropic elastic materials in general, this classical entropy flux relation has not been proved in the new thermodynamic theory. In this note, as a supplement of the theory presented in (Liu in J. Elast. 90:259-270, 2008), it will be proved that the classical entropy flux relation need not be valid in general, by considering a transversely isotropic elastic material body.
引用
下载
收藏
页码:97 / 104
页数:8
相关论文
共 50 条
  • [31] Elastic Microplane Formulation for Transversely Isotropic Materials
    Jin, Congrui
    Salviato, Marco
    Li, Weixin
    Cusatis, Gianluca
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2017, 84 (01):
  • [32] BASIC SOLUTIONS FOR A TRANSVERSELY ISOTROPIC ELASTIC MEDIUM
    DAHAN, M
    PREDELEANU, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1980, 31 (03): : 413 - 424
  • [33] ON THE EQUILIBRIUM OF A TRANSVERSELY ISOTROPIC ELASTIC HALF SPACE
    胡海昌
    ScienceinChina,SerA., 1954, Ser.A.1954 (04) : 463 - 479
  • [34] Elastic properties of inhomogeneous transversely isotropic rocks
    Levin, VM
    Markov, MG
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2005, 42 (02) : 393 - 408
  • [35] Layer stripping for a transversely isotropic elastic medium
    Nakamura, G
    Tanuma, K
    Uhlmann, G
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (05) : 1879 - 1891
  • [36] A strip cut in a transversely isotropic elastic solid
    Artamonova, Ye. A.
    Pozharskii, D. A.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2013, 77 (05): : 551 - 558
  • [37] Transient elastic waves in a transversely isotropic plate
    Weaver, RL
    Sachse, W
    Kim, KY
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1996, 63 (02): : 337 - 346
  • [38] An inner source in a transversely isotropic elastic medium
    Molotkov L.A.
    Journal of Mathematical Sciences, 2002, 111 (5) : 3763 - 3769
  • [39] STRESS CHANNELING IN TRANSVERSELY ISOTROPIC ELASTIC COMPOSITES
    EVERSTINE, GC
    PIPKIN, AC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1971, 22 (05): : 825 - +
  • [40] Ring plate on a transversely isotropic elastic halfspace
    Antony, SJ
    Chandrashekhara, K
    APPLIED MATHEMATICAL MODELLING, 2000, 24 (01) : 55 - 72